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Abstract: The paper aims to present a numerical method used for kinematics analysis of a spatial differential mechanism. The 
numerical method is based on writing in matrix form of kinematics dependence equations between rigid solids that make up the 
system. We finally obtain a system of first order differential equations that integrates using numerical integration methods and we 
obtain the values of kinematics parameters that characterize the mechanism configuration. In the paper is presented only zero-order 
kinematics analysis that is positional analysis. 
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1. INTRODUCTION

We consider the spatial differential mechanism shown in 
the figure below (fig.1). This mechanism has one degree 
of freedom. Further on, we plan to perform its zero-order 
kinematics analysis that is to determine the values of the 
position kinematics parameters that characterize the 
configuration of the mechanism at a given time.  

In order to do this, we will consider a fixed reference 
frame T(Oxyz) relatively to which we study the 
movement of the entire mechanical system (mechanism) 
and four mobile reference frames Ti(Oixiyizi) (i=1,..,4) 
which are integral with each rigid solid that make up the 
mechanical system. 

Fig. 1. Spatial differential mechanism 

2. WRITING KINEMATICAL EQUATIONS
BETWEEN THE RIGID SOLIDS THAT MAKE 
UP THE SYSTEM

The kinematical relation between the rigid solids “1” and 
“2” may be written in matrix form in the following way: 

{ } [ ] { }211 R ω⋅=ω (1) 

In equation (1) the measurements involved have the 
followings mathematical expressions: 

{ } [ ]Tzyx1 111 ωωω=ω (2) 

{ } [ ]Tzyx2 222 ωωω=ω (3)
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In relation (4), “α” represents the angle between the axes 
O1x1 and O2x2 of the reference systems T1(O1x1y1z1) and 
T2(O2x2y2z2) respectively. The value of this angle is 
constant. Vector quantities { }1ω and { }2ω  are expressed 
in projections on the axes of the mobile reference frames 
T1(O1x1y1z1) and T2(O2x2y2z2). 
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The kinematical relation between the rigid solids “2” and 
“3” may be written in matrix form in the following way: 

[ ] { } { } [ ] { }232232 qRR &⋅+ω=ω⋅  (5)

In equation (5) the measurements involved have the 
followings mathematical expressions: 

{ } [ ]Tzyx3 333 ωωω=ω (6)

{ } [ ]T23 23q00q && = (7)
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Vector quantities { }3ω and { }23q& are expressed in 
projections on the axes of the mobile reference frame 
T3 (O3x3y3z3). 

The kinematical relation between the rigid solids “3” and 
“4” may be written in matrix form in the following way: 

[ ] { } { } [ ] { }343343 qRR &⋅+ω=ω⋅  (9) 

In equation (9) the measurements involved have the 
followings mathematical expressions: 

{ } [ ]Tzyx4 444 ωωω=ω  (10) 

{ } [ ]T3424 0q0q && = (11) 
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Vector quantities { }4ω and { }34q& are expressed in 
projections on the axes of the mobile reference frame 
T4(O4x4y4z4). 

The kinematical relation between the rigid solid “1” and 
the element which is supposed to be fixed (zero element 
or frame) may be written in matrix form as followings: 

[ ] [ ] { } { } [ ]T110 000RA ==ω⋅⋅  (13) 

In equation (13) the measurements involved have the 
followings mathematical expressions: 
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where: 

11 zz10 ω=Φ=ϕ && (16) 

The kinematical relation between the rigid solid “4” and 
the element which is supposed to be fixed (zero element 
or frame) may be written in matrix form as followings: 

[ ] [ ] { } { } [ ]T440 000RB ==ω⋅⋅  (17) 

In equation (13) the measurements involved have the 
followings mathematical expressions: 
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where: 

44 xx40 ω=Φ=θ && (20)

Equations (1), (6), (9), (13), (16), (17) and (20) form a 
system of sixteen first order differential equations with 
sixteen unknowns that may be solved using numerical 
integration methods and determine the kinematical 
parameters of the four rigid solids that make up the 
mechanical system (mechanism). The kinematical study 
was performed over a period of two seconds. The angle 
between the axes O1x1 and O2x2 has the value of ten 
degrees. The results are shown in figures 2-16. Thus, in 
figure 1 is shown the variation in relation to time of the 
self-rotation angle φ10 of the rigid solid “1”. Analyzing 
the figure it may be observed a linear variation of the 
angle in relation to time which corresponds to a uniform 
rotation around the axis O1z1..  
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Fig. 2. Self-rotation angle size variation with respect 
to time 

Figure 2 shows the variation in relation to time of the 
rotation angle around the axis O1x1. Analyzing the figure 
it may be seen that the angle 1xΦ is zero constant value
which means that rigid solid “1” has no rotating 
movement around this axis.  
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In figure 3 is shown the variation with respect to time of 
the size of the rotation angle around the axis O1y1. 
Analyzing the figure we see that the angle 1yΦ  is zero
constant value throughout the movement which means 
the rigid solid “1” does not rotate around this axis. 
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Fig. 3. Variation of angle of rotation around the axis 
O1x1 ( 1xΦ ) with respect to time

In figure 4 is shown the variation with respect to time of 
the rotation angle 1zΦ around the axis O1z1. Analyzing
the figure it may be seen that the size of the 
angle 1zΦ presents a linear variation with respect to time
which is identical with the size variation of the self-
rotation angle φ10 presented in figure 1. 
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Fig. 4. Variation of angle of rotation around the axis 
O1y1 ( 1yΦ )  with respect to time

This is explained by the fact that between the sizes of the 
two angles exists the differential relation (16). It may 

also be seen that the angle 1zΦ increases continuously
throughout the movement 
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Fig. 5. Variation of angle of rotation around the axis 
O1z1 ( 1zΦ )  with respect to time

In figure 5 is shown the variation with respect to time of 
the rigid body “2” rotation angle 2xΦ around the axis
O2x2. Analyzing the figure it may be seen a linear 
variation of the size of the angle in relation to time. One 
can see that the angle 2xΦ increases continuously
throughout the movement.  In figure 6 is presented the 
variation with respect to time of the rigid body “2” 
rotation angle 2yΦ around the axis O2y2. Analyzing the
figure we see that throughout the movement the 
angle 2yΦ has a constant value equal to the angle α.
Angle “α” is the angle between the axes O1x1 and O2x2 of 
the reference systems T1(O1x1y1z1) and T2(O2x2y2z2) 
respectively. The angle “α” is ten hexadecimal degrees.  
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Fig. 6. Variation of angle of rotation around the axis 
O2x2 ( 2xΦ )  with respect to time
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Fig. 7. Variation of angle of rotation around the axis 
O2y2 ( 2yΦ )  with respect to time

In figure 7 is shown the variation with respect to time of 
the rigid body “2” rotation angle 2zΦ around the axis
O2z2. Analyzing the figure it may be seen a linear 
variation of the size of the angle in relation to time. 
Comparing the figures 4 and 7 it may be seen a rather 
great similarity between graphs describing the variations 
of the two angles. It may also be seen that the angle 

2zΦ increases continuously throughout the movement.
In figure 8 is shown the variation with respect to time of 
the rigid body “3” rotation angle 3xΦ  around the axis
O3x3. Analyzing the figure it may be seen a periodic 
variation between two minimum and maximum limits of 
the angle size 3xΦ ..
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Fig. 8. Variation of angle of rotation around the axis 
O2z2 ( 2zΦ )  with respect to time

In figure 9 is shown the variation with respect to time of 
rigid body “3” rotation angle 3yΦ  around the axis O3y3.

Analyzing the figure it may be seen a periodic variation 
between two minimum and maximum limits of the angle 
size 3yΦ
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Fig. 9. Variation of angle of rotation around the axis 
O3x3 ( 3xΦ )  with respect to time

In figure 10 is shown the size variation with respect to 
time of the rigid solid “3” rotation angle 3zΦ around the
axis O3x3. Analyzing the figure it may be seen that the 
angle size variation is not linear.  It may also be seen that 
the angle 2zΦ increases continuously throughout the
movement.  
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Fig. 10. Variation of angle of rotation around the axis 

O3y3 ( 3yΦ )  with respect to time

In figure 11 is shown the size variation with respect to 
time of the rigid solid “4” rotation angle 4xΦ around the
axis O4x4.  

108



The Scientific Bulletin of VALAHIA University – MATERIALS and MECHANICS – Nr. 10 (year 13) 2015 

Analyzing the figure it may be seen a periodic variation 
between two minimum and maximum limits of the angle 
size 4xΦ .

It should be noted that the angle of rotation 4xΦ is
identical to the nutation angle θ4 of rigid body “4”. 
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Fig. 11. Variation of angle of rotation around the axis 

O3z3 ( 3zΦ )  with respect to time

In figure 12 is shown the size variation with respect to 
time of the rigid solid “4” rotation angle 4yΦ around the
axis O4y4. Analyzing the figure we see that the 
angle 4yΦ is zero constant value throughout the
movement which means the rigid solid “4” does not 
rotate around this axis. 
. 
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Fig. 12. Variation of angle of rotation around the axis 
O4x4 ( 4x4 θ≡Φ )  with respect to time 

In figure 13 is shown the size variation with respect to 
time of the rigid solid “4” rotation angle 4zΦ around the
axis O4z4. Analyzing the figure we see that the 
angle 4zΦ is zero constant value throughout the
movement which means the rigid solid “4” does not 
rotate around this axis 
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Fig. 13. Variation of angle of rotation around the axis 
O4y4 ( 4yΦ )  with respect to time

The figure 14 presents the variation with respect to time 
of the angle describing the relative motion between the 
rigid solids “2” and “3” of the system. Analyzing the 
figure it may be seen a linear variation of q23 angle size 
with respect to time. One can also notice a similarity 
between the appearance of graphs shown in figures 7 and 
14 only difference being the sign. One can also see that 
the q23 angle increases continuously throughout the 
movement.  
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Fig. 14. Variation of angle of rotation around the axis 
O4z4 ( 4zΦ )  with respect to time

The figure 15 presents the variation with respect to time 
the variation of the angle describing the relative motion 
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between the rigid solids “3” and “4” of the system. 
Analyzing the figure it may be seen a periodic variation 
between two minimum and maximum limits of the angle 
size q34. 
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Fig. 15. Variation in relation to time of the relative 
rotation angle between rigid solids “2” si “3” 

One can also notice a resemblance between the graph 
shape shown in figure 16 and the form of the graphs 
presented in figures 11, 10 and 9. The initial value of q34 
angle is equal to the angle value “α” expressed in 
radians. In all fifteen graphs presented in the paper 
angular measurements values are expressed in radians.  
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Fig. 16. Variation in relation to time of the relative 
rotation angle between rigid solids “3” si “4” 

3. CONCLUSIONS

In order to perform the study of the mechanical system 
kinematics were used kinematical equations written in 
matrix form.  

The paper was presented only zero-order kinematical 
study that is positional analysis. The method can also be 
extended to first order kinematical study that is speeds 
kinematical survey.  

Numerical method presented in the paper has a high 
degree of generality it ca be applied to any mechanical 
kinematical study.  
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