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Abstract: The paper aims to present the dynamic survey of elastic motions which are superposed to rigid movements that occur in a 

mechanical system consisting of two rigid solids. For this we will write the equations of motion for each rigid solid which is 

considered to be free and then we will write the differential equations which describe the motion of each rigid solid in the presence of 

active and constraint forces which are considered to be unknown. Constraint forces will then be eliminated from the differential 

equations system considering the geometrical constraints which are imposed by the link.  

Keywords: rigid motion, elastic motion, contact forces, geometric constraints 

 

1. INTRODUCTION  

It is considered the  rigid solid system shown in the 

figure below (fig.1) consisting of two rigid solids. The 

first one runs o rotational motion under the action of the 

torque 
1mM  and the second one executes a rectilinear 

alternative movement. We propose to study the 

movements the rigid bodies. The movement of the 

second rigid solid may be regarded as an elastic motion 

which is superimposed to the rigid motion (the 

movement described by the first rigid solid).

 

 
Figure 1.  Mechanical system consisting of two rigid solids 
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2. DETERMINING EQUATIONS OF MOTION 

FOR THOSE TWO RIGID SOLIDS WHICH 

ARE CONSIDERED TO BE FREE 

For the rigid solid “1”, which is considered to be free, 

the equations of motion will be written as followings:    
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For the rigid solid “1”, which is considered to be free, 

the equations of motion will be written as followings:    
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In relation (23) the sizes which are involved have the 

followings expressions: 
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In relation (37), { }r
O2

M represents the resultant moment 

relative to point O2 of active forces acting on the rigid 

body “2” from the system 

In relation (38) { }s&   is given by the following 

expression: 

 { } [ ]T
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3. DETERMINING EQUATIONS OF MOTION 

FOR THOSE TWO RIGID SOLIDS WHICH 

ARE CONSIDERED TO BE SUBJECTED TO 

CONSTRAINTS 

 

For the solid rigid “1” of the system, the equations of 

motion in the presence of constraints may be written in 

matrix form as followings: 
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In case of the solid rigid “2” of the system, the equations 

of motion in the presence of constraints may be written 

in matrix form as followings: 
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4. SETTING THE DIFFERENTIAL EQUATIONS 

THAT DESCRIBE THE MOTION OF THE 

MECHANICAL SYSTEM 

 

Relations (41) and (52) may be written together as 

followings: 
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In relation (61) we perform the followings replacements: 
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Substituting relations (67) and (68) in relation (61) and 

then multiplying the relation (61) to the left by [ ]T
L τ  

we obtain the following relation: 
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The matrix [ ]τL  has the following expression: 
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Matrix [ ]τL  given by the relation (78) is called in the 

literature the “orthogonal complement “ of the matrix 

[ ]λL . In relation (73) the following notation is 

introduced: 
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Using the notation (84) relation (73) becomes: 
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Using the relations (72) si (85) relation (69) becomes: 

 [ ] { } [ ] { } { }Q
~

qAqM
~

+⋅−=⋅ &&&  (86) 

In relation (86) the following notation is introduced: 
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Using the notation given by relation (87), relation (86) 

becomes: 
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Relations (87) si (88) form together a system of four first 

order differential equations written in matrix form which 

may be integrated using numerical integration methods 

and we will obtain the results shown in the figures 2-7. 

The movement of the mechanical system will be 

analyzed in two situations: in the presence of structural 

depreciations and in the presence of structural 

depreciations.  

Thus, in figure 2 is represented the variation with respect 

to time of the relative displacement in the case of free 

un-damped oscillations.  
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Figure 2. Relative displacement variation with 

respect to time in the case of un-damped free 

oscillations 

Analyzing the figure it may be observed a periodic 

variation of the relative motion around a value that 

corresponds to the situation of relative rest.  
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Figure 3. Variation of relative displacement velocity 

with respect to time in the case of  un-damped free 

oscillations 
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In the figure 3 is represented the variation of relative 

displacement speed with respect to time in the case of 

free un-damped oscillations. Analyzing the figure it may 

be observed a periodic variation of relative displacement 

speed around a value that corresponds the situation of 

relative rest. In the present case this value is zero.  

In the figure 4 is represented the angular speed variation 

with respect to time in the case of free un-damped 

oscillations of the rigid solid “2”. Analyzing the figure it 

may be observed a periodic variation around a value that 

corresponds to operation at regime. 
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Figure 4. Variation of the angular velocity of rigid 

body “1” in relation to time in the case of free un-

damped oscillations 
 

In the figure 5 is represented the variation of relative 

displacement with respect to time in the case of free 

damped oscillations.  
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Figure 5. Relative displacement variation with 

respect to time in the case of damped free oscillations 

 

Analyzing the figure it may be observed that relative 

linear displacement increases from zero to a value that 
remains constant, situation corresponding to the relative 

rest.  

In the figure 6 is represented the variation of relative 

displacement speed with respect to time in the case of 

free damped oscillations. Analyzing the figure it may be 

observed that the relative linear displacement velocity 

decreases to zero value, situation corresponding to the 

relative rest.  
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Figure 6. Variation of relative displacement velocity 

with respect to time in the case of damped free 

oscillations 

In the figure 7 is presented the variation of the angular 

speed with respect to time of the rigid solid “1” of the 

system in the case of free damped oscillations. 

Analyzing the figure it may be observed that the value of 

angular speed increases from zero to a maximum value 

that represents the angular speed regime. 
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Figure 7. Variation of the angular velocity of rigid 
body “1” in relation to time in the case of free un-

damped oscillations 

 

In conclusion, it may be seen that in the case of free 

damped oscillations, namely in the presence of structural 

depreciations, the angular speed of the rigid body “1” of 

the system stabilizes at a maximum value that is called 
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value of regime and linear velocity characterizing the 

relative motion of the rigid solid “2” of the system 

stabilizes at zero value. In other words, the relative 

motion of the rigid body “2” of the system cancels.  

The relative displacement of the rigid solid “2” of the 

system reaches to a maximum value that corresponds to 

the situation of relative rest. 

  

5. CONCLUSIONS 

 The numerical method described in the paper is based 

on writing in matrix form of differential equations 

describing the system motion. 

Using the numerical method described in the paper one 
could lead to displacement, velocity and acceleration of 

any point belonging to those two rigid solids that make 

up the system. 

The system has two interior links: one active inner link 

which is represented by a linear elastic spring and one 

inner passive (stationary) which is represented by a slide. 

The numerical method presented in this paper has a high 

degree of generality and it can be extended to the 

dynamic study of any mechanical system met in 

engineering applications.  
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