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TORSIONAL VIBRATIONS DURING THE CONSTANT TORQUE START-
UP PHASE OF AN INDUSTRIAL EQUIPMENT (1)
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Abstract: The stresses in a coupling shaft between a motor and an equipment are caused by vibrations produced by dynamic
loading and are superposed on the service stresses. These cumulated stresses have values that sometimes can exceed the allowable
values. During the constant torque start-up torsional vibrations occur in the shaft producing a dynamic torque M,,; . This paper
shows how to simulate the dynamic response of an equipment to the constant and variable torque start-up and analyzes the
influence of the time variation of the torque from zero to the maximum value.
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1. THE DYNAMIC RESPONSE OF UNDAMPED
ELASTIC SYSTEMS SUBJECTED TO
MECHANICAL SHOCKS

Mechanical shocks are short-acting loads, usually of
duration comparable with the eigenperiod of the loaded
elastic system and are caused by the application of an
external torque M(7) in a very short time At (Fig. 1).
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Fio.1. The mechanical shock with At period time

T

The mechanical system consisting of a homogeneous
wheel with the moment of inertia J and an elastic shaft
with the stiffness &, subjected to the short torque M(%), is
considered to study the response of the mechanical
undamped systems.

The torque M(?) can be considered constant for a very
short period of time Az (Fig. 1). The area of the hashed
surface is equal to an infinitesimal angular momentum
dK, producing a variation of the angular velocity Aw
according to:

dK =J-do=M(t) dr (1)

It’s obvious that the elementary angular displacement
dg of the wheel of wheel of inertia J under the action of
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infinitesimal angular momentum dK is given by the
relations:

=M(Z')~d2'

d
2 Jop

sinp(t—rt) t>71 2)
where p is the eigen-frequency of the elastic system:

P47 3)

If the effects of the infinitesimal pulses between 7=0
and 7=t are summed up according to Riemann, or if the
elementary angular displacement (2) is integrated, the
expression of the total angular displacement ¢(z) under
the action of torque M(?) is obtained as DUHAMEL's
integral :

t
o) =M inp(1-7)-dr 4)

0o Jp
The total angular displacement of the mechanical

system ¢(t) during the shock loading, given by the
relation (4) is called initial dynamic response.

The total angular displacement of the mechanical
system ¢(t) after the shock loading (#>A7) represents
the residual dynamic response and is a harmonic
function:

o(t)=a-sinpt+b-cospt %)

The constants a and b in equation (5) can be determined
using the boundary conditions for angular
displacements and velocities at the time between the
initial and residual dynamic response.



2. NUMERICAL SIMULATION OF THE
DYNAMIC RESPONSE OF THE MECHANICAL
SYSTEM SUBJECTED TO A CONSTANT
TORQUE

The particular case of an undamped mechanical system
under the action of a constant torque (Fig. 2):

M(9=M, (6)
AM(7)

M,

v

Fig.2. The step aplied torque

The variation of the angular displacement ¢(?) during
the application of the constant torque is obtained using
the general relation (4):

JA-/I;Z (1-cos pt) (7

o(t)=

The static angular displacement under the action of the
constant torque M, is given by:

M, M,
Py =—=""7% (®)
' k, J'p2

The dynamic multiplier of the displacement is defined
as the ratio of the angular displacement (7) over the
static angular displacement (8):

\P(t)=M=1—cospt C)

st

In Fig. 3 the variation of the dynamic multiplier of the
displacement is plotted using MATHCAD for the
following particular parameters:

J=1lkg-m’; k=4’ kg-m’-s7;
My=10N-m

(10)
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Fig.3. Dynamic multiplier of the displacement

Note: The maximum dynamic multiplier of the
displacement is y = 2 and the minimum is ' = 0.

94

The eigen-frequency p depends on the dynamic
properties of the mechanical system: the stiffness of
shaft k£ and the moment of inertia of the wheel J.

P=\7 (11)

The same results were obtained by simulating the
dynamic response of the undamped mechanical system
using MATLAB SIMULINK.

Fig. 4.a shows the block diagram of the undamped
system under the action of a constant torque.

The differential equation of the model is:

Lk M(t)

t— W= 12
o+ ; (12)
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Fig.4.a. The block diagram of the simulated system

The variation of the dynamic multiplier of the
displacement given by differential equation (12) is
plotted using MATLAB SIMULINK for the same
particular values of parameters (10).
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Fig.4.b. Dynamic response of the undamped system

The dynamic response of the damped mechanical
system can be obtained in the same way.

Figure 5.a shows block diagram of the damped system
under the action of the constant torque.

The differential equation of the model is:

¢+£¢+£¢)=M

J J J (13)
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Fig.5.a. The block diagram of the simulated system

Fig. 5.b. shows the dynamic response given by
differential equation (12) for the particular values of
parameters:

J=lkg-m?; c=2kg-m’-s7!

(14)
k=4z" kg-m?-s2; M,=I10N-m
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Fig.5.b. Dynamic response of the damped system

3. NUMERICAL SIMULATION OF THE
DYNAMIC RESPONSE OF THE MECHANICAL
SYSTEM SUBJECTED TO A LINEAR
INCREASING TORQUE

The case of a linearly increasing torque M(z) acting on
the undamped mechanical system will be investigated.
The variation of the applied torque (Fig. 6) is given by
the following relation:

T
M, — Jor 0<r<t

M(7)= t (15)
M, for T>¢
Relations (4) and (5) can be used to evaluate the

dynamic response of the system during the application
of the variable torque ramp:

- for the first time interval 0<¢<¢,;:

t
¢(t)=j4;I%-sinp(t—r)~dT (16)
"Fotl
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- for the second time interval ¢ >¢;:

M,
o(t)=a-sinpt+b-cospt+ 02 17
J-p
F(y
M,
0 t z'
Fig.6

Integrating and substituting the boundary conditions,
the angular displacement and velocity are:

- for the first time interval 0 <?<¢;:

M t sinpt
o= 7 (t__ ptpj
P\t 1 (18)
. M, [ 1-cospt
t)= :
(1) 7 [ y j
- for the second time interval ¢ >¢;:
M
@(t)=a-sinpt+b-cos pt+—2"
Jop? o (19)
@(t)=a-p-cospt—b- p-sinpt

The constants a and b were determined from the
boundary conditions between two subintervals for both
the angular displacements and velocities:

M, (1—cospt1}
J-p’? Pl ’

b M, (sinptlj
J‘P2 pL;

Figures 7.a-d show the dynamic response given by
relations (18) and (19) for the same particular values of
the parameters (10):

a=

(20)

J=1lkg-m’; k=4r° kg-m’-s7;
M,=10N-m
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and for following values of the torque ramp duration:

t1=0,]'T,' t2=0,5'T,' t3=T,' t4=1,2'T (22)
where T:Z—”zl s
p

is the eigen-period of vibration
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Fig.7.a. Dynamic multiplier of the displacement
for t;=0,1T
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Fig.7.b. Dynamic multiplier of the displacement
for t,=0,5T
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Fig.7.c. Dynamic multiplier of the displacement
for t;=T
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Fig.7.d. Dynamic multiplier of the displacement
for t,=1,2T
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Important note: Figure 7.c shows that for the ramp
duration ¢, T the residual dynamic response is
missing.

Figure 8.a shows the block diagram of the undamped
system subjected to the constant torque.

The differential equation of the model is given by the
previous relation (12) .
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Fig.8.a. The block diagram of the simulated undamped
system

Fig. 8.b-e show the dynamic response given by
differential equation (12) for the same particular values
of parameters (10):

J=1kg-m2; k=47’ kg~m2~s_2;
M,=10N-m

and for following values of the ramp duration:
4=0,1T; ,=0,5T; t;=T; t,=1,2-T (23)

where 7 = 27 _ 1 s is the eigen-period of vibration.
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Fig.8.b. Dynamic response of the undamped system
for t;=0,1T
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Fig.8.c. Dynamic response of the undamped system

for 1,=0,5T Fig.9.a. The block diagram of the simulated damped
=0,

system

Figures 9.b-e show the the dynamic response given by
differential equation (12) for the particular values of
the parameters:

J=1lkg-m?; c=2kg-m’-s”!
k=471° kg-mz-s_z; M,y=10N-m

(25)

Fig.8.d. Dynamic response of the undamped system
for t;=T

Fig.9.b. Dynamic response of damped system
for t;=0,1T
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Fig.8.e. Dynamic response of the undamped system
fort,=1,2T

The dynamic response of the damped mechanical
system can be obtained in a similar manner using
MATLAB SIMULINK.

Fig. 9.a shows the block diagram of the simulated
damped system subjected to constant torque. The
differential equation of the model is:
.oc . k M(t)
+—0+—-@=—==
? J 4 J 4 J

Fig.9.c. Dynamic response of the damped system
for t,=0,5T
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Fig.9.d. Dynamic response of the damped system
for t;=T
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Fig.9.e. Dynamic response of the damped system
fort,=1,2T

4. CONCLUSIONS

The following cases were analyzed using MATLAB
SIMULINK:

- Case when the electro-

M
1: L<M, <M,,
2
mechanical system remains at rest and the rotor vibrates
due to the sudden application of the torque M,,.

- Case 2: M,,=M,, when the electro-mechanical

system remains at rest and the rotor vibrates (no
rotation or solid body motion occurs) due to sudden
application of the torque M,,.

- Case 3: M, >M,, when the electro-mechanical

system moves as a solid body but also experiences
torsional vibration due to sudden application of torque
M,

The simulations performed in MATCAD and
MATLAB SIMULINK show the same response of the
electro-mechanical system.

The technical solution for the reduction or the total
elimination of the dynamic torque variation is the linear
application of the driving torque M,, on a time interval
equal to the eigen-period of the system.
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