
The Scientific Bulletin of VALAHIA University – MATERIALS and MECHANICS – Nr. 9 (year 12) 2014 

Fig.1. The mechanical shock with ∆τ period time
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Abstract: The stresses in a coupling shaft between a motor and an equipment are caused by vibrations produced by dynamic 
loading and are superposed on the service stresses. These cumulated stresses have values that sometimes can exceed the allowable 
values. During the constant torque start-up torsional vibrations occur in the shaft producing a dynamic torque Mtd . This paper 
shows how to simulate the dynamic response of an equipment to the constant and variable torque start-up and analyzes the 
influence of the time variation of the torque from zero to the maximum value. 
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1. THE DYNAMIC RESPONSE OF UNDAMPED 
ELASTIC SYSTEMS SUBJECTED TO 
MECHANICAL SHOCKS 

Mechanical shocks are short-acting loads, usually of 
duration comparable with the eigenperiod of the loaded 
elastic system and are caused by the application of an 
external torque  M(τ) in a very short time ∆τ (Fig. 1). 

 

 

 

 

 

 

 

 

The mechanical system consisting of a homogeneous 
wheel with the moment of inertia J and an elastic shaft 
with the stiffness k, subjected to the short torque M(t), is 
considered to study the response of the mechanical 
undamped systems. 

The torque M(t) can be considered constant for a very 
short period of time ∆τ (Fig. 1). The area of the hashed 
surface is equal to an infinitesimal angular momentum 
dK, producing a variation of the angular velocity ∆ω 
according to: 

ττω d)(MdJdK ⋅=⋅=    (1) 

It’s obvious that the elementary angular displacement 
dϕ of the wheel of wheel of inertia J under the action of 

infinitesimal angular momentum dK is given by the 
relations: 
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where p is the eigen-frequency of the elastic system: 

J
kp =     (3) 

If the effects of the infinitesimal pulses between τ=0 
and τ=t are summed up according to Riemann, or if the 
elementary angular displacement (2) is integrated, the 
expression of the total angular displacement ϕ(t) under 
the action of torque M(t) is obtained as DUHAMEL's 
integral : 

τττϕ d)t(psin
pJ

)(M)t(
t

0
⋅−⋅

⋅
= ∫   (4) 

The total angular displacement of the mechanical 
system ϕ(t) during the shock loading, given by the 
relation (4) is called initial dynamic response. 

The total angular displacement of the mechanical 
system ϕ(t) after the shock loading (t>∆τ) represents 
the residual dynamic response and is a harmonic 
function: 

ptcosbptsina)t( ⋅+⋅=ϕ    (5) 

The constants a and b in equation (5) can be determined 
using the boundary conditions for angular 
displacements and velocities at the time between the 
initial and residual dynamic response. 
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2. NUMERICAL SIMULATION OF THE 
DYNAMIC RESPONSE OF THE MECHANICAL 
SYSTEM SUBJECTED TO A CONSTANT 
TORQUE 

The particular case of an undamped mechanical system 
under the action of a constant torque (Fig. 2): 

M(τ)=M0     (6) 

 
The variation of the angular displacement ϕ(t) during 
the application of the constant torque is obtained using 
the general relation (4): 
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The static angular displacement under the action of the 
constant torque M0 is given by: 
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The dynamic multiplier of the displacement is defined 
as the ratio of the angular displacement (7) over the 
static angular displacement (8): 
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In Fig. 3 the variation of the dynamic multiplier of the 
displacement is plotted using MATHCAD for the 
following particular parameters: 
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Fig.3. Dynamic multiplier of the displacement 

 

Note: The maximum dynamic multiplier of the 
displacement is ψ = 2 and the minimum is ψ = 0.  

The eigen-frequency p depends on the dynamic 
properties of the mechanical system: the stiffness of 
shaft k and  the moment of inertia of the wheel J. 

J
kp =    (11) 

The same results were obtained by simulating the 
dynamic response of the undamped mechanical system 
using MATLAB SIMULINK. 

Fig. 4.a shows the block diagram of the undamped 
system under the action of a constant torque. 

The differential equation of the model is:   

J
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J
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Fig.4.a. The block diagram of the simulated system 

The variation of the dynamic multiplier of the 
displacement given by differential equation (12) is 
plotted using MATLAB SIMULINK for the same 
particular values of  parameters (10). 

 
Fig.4.b. Dynamic response of the undamped system 

 

The dynamic response of the damped mechanical 
system can be obtained in the same way. 

Figure 5.a shows block diagram of the damped system 
under the action of the constant torque. 

The differential equation of the model is:   

J
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J
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J
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Fig.2. The step aplied torque 
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Fig.5.a. The block diagram of the simulated system 

Fig. 5.b. shows the dynamic response given by 
differential equation (12) for the particular values of  
parameters: 
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Fig.5.b. Dynamic response of the damped system 

 

3. NUMERICAL SIMULATION OF THE 
DYNAMIC RESPONSE OF THE MECHANICAL 
SYSTEM SUBJECTED TO A LINEAR 
INCREASING TORQUE 

 

The case of a linearly increasing torque M(τ) acting on 
the undamped mechanical system will be investigated. 
The variation of the applied torque (Fig. 6) is given by 
the  following relation: 
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Relations (4) and (5) can be used to evaluate the 
dynamic response of the system during the application 
of the variable torque ramp: 

- for the first time interval 1tt0 << : 
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- for the second time interval 1tt > : 
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Integrating and substituting the boundary conditions, 
the angular displacement and velocity are: 

- for the first time interval 1tt0 << : 
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- for the second time interval 1tt > : 
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The constants a and b were determined from the 
boundary conditions between two subintervals for both 
the angular displacements and velocities: 
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Figures 7.a-d show the dynamic response given by 
relations (18) and (19) for the same particular values of 
the parameters (10): 
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and for following values of the torque ramp duration: 

t1=0,1⋅T;  t2=0,5⋅T; t3=T;  t4=1,2⋅T   (22) 

where s1
p

2T ==
π  

is the eigen-period of vibration 
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Fig.7.a. Dynamic multiplier of the displacement 

for t1=0,1T 
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Fig.7.b. Dynamic multiplier of the displacement 

for t2=0,5T 
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Fig.7.c. Dynamic multiplier of the displacement 

for t3=T 
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Fig.7.d. Dynamic multiplier of the displacement 

for t4=1,2T 

Important note: Figure 7.c shows that for the ramp 
duration t1 = T the residual dynamic response is 
missing. 

 

Figure 8.a shows the block diagram of the undamped 
system subjected to the constant torque. 

The differential equation of the model is given by the 
previous relation (12) .  

 
Fig.8.a. The block diagram of the simulated undamped 

system 

 

Fig. 8.b-e show the dynamic response given by 
differential equation (12) for the same particular values 
of  parameters (10): 
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and for following values of the ramp duration: 

t1=0,1⋅T;  t2=0,5⋅T; t3=T;  t4=1,2⋅T   (23) 

where s1
p

2T ==
π is the eigen-period of vibration. 

 
Fig.8.b. Dynamic response of the undamped system 

for t1=0,1T 
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Fig.8.c. Dynamic response of the undamped system 

for t2=0,5T 

 
Fig.8.d. Dynamic response of the undamped system 

for t3=T 

 

Fig.8.e. Dynamic response of the undamped system 
for t4=1,2 T 

The dynamic response of the damped mechanical 
system can be obtained in a similar manner using 
MATLAB SIMULINK.  

Fig. 9.a shows the block diagram of the simulated 
damped system subjected to constant torque. The 
differential equation of the model is:   
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Fig.9.a. The block diagram of the simulated damped 

system 
 

Figures 9.b-e show the the dynamic response given by 
differential equation (12) for the particular values of  
the parameters: 
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Fig.9.b. Dynamic response of damped system 

for t1=0,1T 

 

 
Fig.9.c. Dynamic response of the damped system 

for t2=0,5T 
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Fig.9.d. Dynamic response of the damped system 

for t3=T 

 
Fig.9.e. Dynamic response of the damped system 

for t4=1,2 T 

 

4. CONCLUSIONS 

The following cases were analyzed using MATLAB 
SIMULINK: 

- Case 1: sm
s MM

2
M

<≤ , when the electro-

mechanical system remains at rest and the rotor vibrates 
due to the sudden application of the torque Mm. 

 - Case 2: sm MM = , when the electro-mechanical 
system remains at rest and the rotor vibrates (no 
rotation or solid body motion occurs) due to sudden 
application of the torque Mm. 

- Case 3: sm MM > , when the electro-mechanical 
system moves as a solid body but also experiences 
torsional vibration due to sudden application of torque 
Mm. 

The simulations performed in MATCAD and 
MATLAB SIMULINK show the same response of the 
electro-mechanical system. 

The technical solution for the reduction or the total 
elimination of the dynamic torque variation is the linear 
application of the driving torque Mm on a time interval 
equal to the eigen-period of the system. 
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