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Abstract

The dynamic stresses occurring in the coupling shaft between the motor and the industrial equipment are caused by vibrations due
to dynamic loading (inertial shocks or accidental loading). They are superposed on the normal service stresses and can eventually
lead to overall loading exceeding the maximum allowable limits. The dynamic stresses are usually considered in the design by
means of the overloading coefficient k,, in order to take this superposition into account. In the case of shaft and gear mechanical
systems suddenly loaded with a constant torque, torsional vibrations occur in the shaft causing a dynamic torque M,; and shear
stresses t,; which have to be considered in the design. This paper presents a determination method of the dynamic torque and
analyses the influence of mass (inertia) and the torsional stiffness paramters of the shafi during the contant torque start-up phase.
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1. INRODUCTION k, — stiffness parameter of the coupling shaft;
An electric motor will be analyzed, having a rotor @,(t) — rotation angle of the rotor.
characterized by the moment of inertia J; coupled by
means of a shaft to an equipment with the moment of Ji 91
inertia J>. \ k M,,
t
The shaft between the motor and the equipment is \
characterized by the torsional stiffness &,. The model of \\ ''''''''''''''''''' A |
the electro-mechanical system is represented in Fig. 1. \
5 N
J M, Fig. 2 The model of the electro-mechanical
i P system for step 1
t
\J Step 1 begins at the moments ¢ = 0, when the rotor is
M subjected to the step torque M, and the equipment
§ remains for a very short time at rest (Fig. 3).

Fig. 1 The model of the electro-mechanical system

Obviously, the driving torque M,, required to start-up M, 4
the equipment has to be larger that the resisting torque
M:
M, > M, (6]
The start-up phase consists of two important steps >
(stages): t

Fig. 3 The step applied trporque M,
Step 1: The vibration of the electro-mechanical J parp pord

system, without the motion of the equipment

At the moment =0, the rotor is subjected to a constant
driving torque M,, but the equipment is still at rest. The
model of this step is presented in Fig. 2.

The differential equation of the motion of the rotor
under the action of the constant driving torque M can be
expressed using the theorem of the angular momentum:

. . . o Jy¢r=—k -0+ M, @)
The following notations are considered in Fig. 2: . .
) o The initial conditions for Step 1 are:
M, —electromagnetic driving torque (constant); .
?1(0)=0; ¢;(0)=0 A3)

J; — moment of inertia of the shaft;
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Considering the initial conditions (3), the differential
equation (2) can be expressed using the angular
displacement and the angular velocity:

Mm
0;(t)= i

[I—cos(p] t)]
' 4)
(1) = Azm P Si”(pz 't)

t

where p; is the eigen-frequency of the elastic system:

_ |k
P 7,

Note 1: Under the action of the constant torque M,, the
shaft will deform under the angle ¢;, producing an
internal torque M;:

)

M

Ds 6

K (6)

The time #; corresponding to the end of Step 1 is
obtained by equalizing the relations (4) and (6):

. k
A:—::Mk—jl[]—cos[t]\/%j} @)

In this way the end moment of Step 1 #; can be

determined:
JI M m_M s
—+ arccos| —2—=
kt M m

The angular velocity of the rotor at the end of Step 1 is
obtained introducing ¢; in relation (4):

Ms(sz _Ms)
JI’kt

kt'(olm:Ms = Pim =

1y

®)

@i(t;)= )

The angular displacement given by relation (6) and the
velocity of the rotor given by relation (9) are the initial
conditions for Step 2 — Setting the equipment into
motion.

Note 2: The expression of the angular velocity (9) is
valid only if the driving torque M,, > My/2; for the
situation when M/2 < M, <M, system performs an
oscillating motion.

Step 2: The vibration of the electro-mechanical
system, during the motion of the equipment

The corresponding model of this step is shown in Fig. 4.
This is a system with two degrees of freedom,
consisting of the rotor with the moment of inertia J;
subjected to the driving torque M, the shaft with the
torsional stiffness &, and the equipment with the
equivalent moment of inertia J, subjected to the
resisting torque M, (M,,> M,).

The two rotation angles @;(2) and @y(t) are time-
independent functions and express the relative motion
(the torsional vibrations) of the the rotor and the
equipment (of the system with two degrees of freedom)
for the situation: M, /2 < M,, < M,.
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Fig. 4 The model of the electro-
mechanical system for step 2

The initial conditions for this step (at t=t;) are the final
conditions from the Step 1:

- angular displacements:

M,
@,(t;) = k: ; (10)
Py(t;)=0;
- angular velocities:
@,(t;)= ‘M‘Y(Zf.mkt_MS) (11)
Py(1;)=0

The differential equations of the system motion are
obtained using the theorem of the angular momentum:
J, o +k - =
{ 1 ?1 (01 =9;) m (12)
Jy @y k(@ —py)=—M,
We denote by ¢ =@, — ¢, the relative angle of rotation
between the rotor and the equipment.

The differential equation of the relative motion between
the rotor and the equipment is obtained by dividing the
equations (12) by J; and respectively J; and subtracting
them accordingly:
J,+J,
Ji-J;

_ JZMm +J1Ms

@+k, 7
1772

(13)

The general solution of the differential equation (13) is
the sum of harmonic homogeneous solution and a
particular solution:

o(t)=a -cos(pt — pt])+b-sin(pt — pt1)+
JM, +J,M,
(1 +72) K,
¢(t)=—a-p-sin(pt—pt;)+b-p-cos(pt - pt;)
where p is the eigen-frequency of the relative vibration :

/J +J

p= 1 2 kt
JiJ;

The constants a and b from the general solution (14)

can be determined using the initial conditions (10) and
(11) in the differential equation (12):

(14)

(15)
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. M, \/ oM, -M, J, The angular vglocity varigs around an average value
, M, Ji 16) equal to zero with the amplitude:
oM [, M, Ao, = ]Z . p, 23)
k, M-(J;+J5) | !
The general solution of the differential equation (13) is: "
IMu 2 IiMs | osipt—pt )+
¢’(t)_MX (J1+J2)‘MS (17) 02
i k + My M, I -sin(pt— t)+,
M, g g, PP &I((’)
oM, -M, J !
) M, m_Ts._ "2 .cos(pt—pt;)— )
P(t) = P M Ji+d;
" |=sin(pt-pt;) !
The dynamic torsion moment of the coupling shaft is a
linear function, depending on the rotation angle ¢(2): .
o 0.01 0.02 0.03 0.04
My(t)=k, -[c-cos(pt—pt,—0)+d| (18) l
where: Fig. 5. The variation of the angular displacements and
velocities for case 1
MS\/ 2Mm_MS ‘]2
c=—2= [+ —2—2 ;
ky M,  J+J, (19) o
dodMutI M, Case 2: —* <M, <M, , when the equipment is not in
(‘]1 + JZ ) : Ms ' 2
a solid body motion, but the rotor J; and the equipment
M M. T . L -
0 = arcig \/ " s 2 (20) J, vibrate due to the application of driving torque M,,.
M Ji+J; At the limit when M, =M, the system vibrates; the

torsional vibration solution is obtained by replacing
M,, = M in the relations (17):

2. NUMERICAL SIMULATION OF MOTION

o(t) —A]f:{cos(pt—ptj)+ ijJz -sin(pt—pt,)+1} (24)

Depending on the relative values of driving torque M,,
and the resisitng torque M,, the following particular
cases can be anlyzed: _ M,

M P(1)=—>
Case 1: M,, < 25 when the equipment is at rest and !

I
J,+J,

~p-{—sin(pt—pt1)+ -cos(pt—ptz)}

Figure 6 shows the wvariation of the angular
displacements and velocities for the following particular
parameters: J;=107 kgm’; J,=5-107 kgm’; k=1000Nm;

only the rotor J; vibrates, due to the application of the
driving torque M,,. Fig. 5 shows the simulated motion

using MATHCAD. M= M.=300 Nm
The solution of the vibrations is given by equations (4): . '
M k 1
oi(t)==l1=cos(p; 1)} py=|F
: Ji Q1)

M .
w,(t)= k”’ ~p,~sm(p,~t) 0629
t
In Fig. 5 the graphs of variation of the angular %)”
displacements and velocities are plotted for the 10000 029
following particular parameters: J,=107 kgm’; J,=5-100 2

? kgm?’; k=1000Nm; M;=300 Nm (i M,=150 Nm .

—0.125

Remarks:
Figure 5 shows the wvariation of the angular
deformations of the rotor around an average value equal o
to the static angular deformation M,/k, with an 49673510 00137 °'°‘225 00312 004
amplitude of Fig. 6. The variation of the angular displacements and
Ag, = AZ m (22) velocities for case 2
t
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Remarks:

The diagrams in Figure 6 show the variation of the
angular deformations around an average value equal to
the static angular deformation M, /k, corresponding to
the driving torque, with the amplitude:

(25)

M
Ap, = kS =03 rad

t

The angular velocity varies around an average value
equal to zero with the amplitude:

Aa)l = (26)

M, -p=103923 rad /s
kt

The time ¢#; given by relation (8) for this case has the

value: t; = 4,967107 s.

The origin of the time axis in Fig. 6 was considered to

be 1.

Case 3:

body motion, but the rotor J; and the equipment J,
vibrate due to the application of the driving torque My,
The solution of the torsional vibrations in this case is
given by the relationship (17).

M, > M, when the equipment is in a solid

In Fig. 7 the variation of the angular displacements and
velocities is plotted using MATHCAD for the following
particular parameters:

J=107 kgm’; J,=5-107 kgm’; M, =15-M_ =450 Nm
k=1000Nm;

1

0.625]

o0

o(t)
10000 0-25

axalt)

—-0.125

A%

0.0317

—0.:

6623]><1073 0.015 0.0233

t

0.04

Fig. 7. The variation of the angular displacements and
velocities for case 3

Remarks:

The diagrams in Fig. 7 show the variation of the angular
deformations around an average value equal to the static
angular deformation M, /k, corresponding to the driving
torque, with the amplitude:

M

Ap=—%=045 rad (27)

t

The angular velocity varies around an average value
equal to zero, with the amplitude:

M
Aow=—"2
t

(28)

- p=155855 rad/s
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The time ¢#; given by relation (8) for this case has the
value: t; = 6,623-107 s.

The origin of the time axis in Fig. 7 was considered to
be 1.

3. NUMERICAL SIMULATION OF THE
DYNAMIC TORQUE IN THE SHAFT

The variation of the dynamic torque in the shaft will be
investigated for the three cases mentioned above:

M
Case 1: M,, = 2“ =150Nm , when the rotor J; and

and the equipment J, vibrate due to the application of
the driving torque M,, producing a deformation ¢;(?)
given by the relation (21). In this case the dynamic
torque in the shaft M, is given by the following relation:

My(t) =k, -p,(1)=M,[1-cos(p, -1)]

L
P 7,

The variation of the dynamic torque in the shaft M,; is
the same as the variation of the angular deformation
from Fig. 5, with the difference that the average
dynamic torque M,,,.;and the amplitude of the dynamic
torque AM, are equal to the applied driving torque M,,:

M g =AM 4 = 150 Nm (30)

29

Case2: M, =M, =300Nm when the rotor J; and the

equipment J, vibrate due to the application of the
driving torque M,, and the deformation of the shaft ¢;(?)
is given by equation (24). The dynamic torque in the
shaft M, is given by relation:

M(1) =M,,,[cos(pr—pr1)+ -sin(pr—pt,)w}- GD

J,+J,

The average dynamic torque My,., is equal to the
applied driving torque:

M ypoa =M,, =300 NmM,, (32)
The amplitude of dynamic torque AM, is:
J+2J
AM =M L2
R (33)

AM g, =406,202 Nm

Case3: M, =15-M,=450Nm when the equipment

is in a solid body motion, but the rotor J; and the
equipment J, vibrate due to the application of the
driving torque M,,. The deformation of the shaft ¢;(?) is
given by the relation (17). The dynamic torque M, is
given by the relation:

Md(t):k,-[c-cos(pt—pt1—9)+d] (34)
where: ¢ = 4 2Mn =M, T
k, M, J+J,
_IM, I M (35)
(J1+J2)'Ms )
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The average dynamic torque M,y is:

J,M,, +J,M,
M =M - 2% m 1s
dmed s (J] +J2)'M_Y (36)
M .y =325 Nm

The amplitude of dynamic torque AM, is equal with:

oM, M, J,
M, J,+7, G7

s

AMdzMS\/1+

AM = 508,675 Nm

4. THE INFLUENCE OF THE MASS AND
DRIVING TORQUE PARAMETRERS ON THE
DYNAMIC TORQUE IN THE SHAFT

The parameters x and y are definded as it follows:

e The mass parameter x is the ratio of the moments
of inertia of the rotor and of the equipment (see
Fig. 1):

_Ji

I3

X (38)
e The driving torque parameter y is the ratio of the

driving torque M,, over the resistant torque M, (see
Fig. 1):

y=—=y2l (39)

The maximum and the minimum dynamic torques
Mmax and Mgmin cand be expressed considering the
parameters x and y as it follows:

Mdn1zL\’(x’y):Ms[y+x+ 2y+x] (40)

I+x \ I+x

Mdm,-,,(x,y):M.{y”—,/—Zy”] @1
1+x I1+x

The following quantities will be defined to study the
influence of mass parameter x and torque parameter y
on the dynamic torque M,

o The dynamic multiplier of the maximum torque:

\Ijmax:Mdmax:y+x+ 2y+x (42)
M, I+x N I+x

o The dynamic multiplier of the average torque:

— dmed _ VT2 43
med TUM T It )

N

o The dynamic multiplier of the torque amplitude

A\P:Mdmax_Mdmed — 2y+x (44)
M, V I+x

91

4.1. The influence of mass parameter x

Fig. 8 - 10 show the graphs of variation of all the
dynamic multipliers presented above, for the following
particular parameters:

y=05y=075 y=1; y=2.5; y=4;

xel0:4] “5)

8

6
Wmax(x, 0.5)

Wmax(x,0.75)
Wmax(x, 1)

Wimax(x,2.5) 4|

Wmax(x, 4)

axa(x)

0 1 2 3 4

X

Fig. 8. Influence of mass parameter x on ¥yu,

3
Wmed(x, 0.5)

Wmed(x, 0.75)
Wmed(x, 1)

Wmed(x,2.5) 2

Wmed(x, 4)

axa(x)

0 1 2 3 4

x

Fig. 9. Influence of mass parameter x on ¥yeq

AW (x,0.5)
EX,OJS)Z
Ex, 1)
EX,Z.S)

AY (x,4) \
1

axa(x)

0 1 2 3 4

X

Fig. 10. Influence of mass parameter x on A¥Y
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4.2. The influence of torque parameter y

Fig. 11 - 13 show the graphs of variation of the defined
multipliers, for the following particular parameters:
x=0.05x=01; x=05; x=1; x=4,

yel0:4] 40

6
Pmax(0.03,y)

Ymax(0.1,y)
Ymax(0.5,y)

Ymax(1,y) 4|

Pmax(4,y)

xaly)

%)

<

0 1 2 3 4
y

Fig. 11. Influence of torque parameter y on ¥y,

4

Wmed(0.05, y>3
Ymed(0.1,y)
Ymed(0.5,y)
Pmed(1,y) 2|
md(“v)/)

aly)

0 1 2 3 4
y

Fig. 12. Influence of torque parameter y on ¥y,cq

AW (0.05,y)
IR E
F‘(O‘S,y)
I(l-,y)
E‘My)

axly)

=)

2 3 4
y

Fig. 13. Influence of torque parameter y on AY
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5. CONCLUSIONS

The results of the performed theoretical research and
numerical simulations, can be summarized in the
following conclusions:

- the results of the three insetigated cases show the
possibility of setting the system into motion for
values of the driving torque between Ms/2 and M,,
when the driving toruge M,, is suddenly applied;

- as shown in Fig. 8 - 10, the dynamic multiplier A¥
decreases asymptotically with x as well as the
dynamic multiplier ¥,,.qfory >0.5.

- as shown in Fig. 11 - 13, the dynamic multipliers
¥,.ea and A increase with the torque parameter y
and the mass parameter x. The lines intersect in a
point corresponding to the values: y = [ and
respectively y = 0,5.
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