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Abstract  
The dynamic stresses occurring in the coupling shaft between the motor and the industrial equipment are caused by vibrations due 
to dynamic loading (inertial shocks or accidental loading). They are superposed on the normal service stresses and can eventually 
lead to overall loading exceeding the maximum allowable limits. The dynamic stresses are usually considered in the design by 
means of the overloading coefficient ks, in order to take this superposition into account. In the case of shaft and gear mechanical 
systems suddenly loaded with a constant torque, torsional vibrations occur in the shaft causing a dynamic torque Mtd and shear 
stresses τd which have to be considered in the design. This paper presents a determination method of the dynamic torque and 
analyses the influence of mass (inertia) and the torsional stiffness paramters of the shaft during the contant torque start-up phase. 
Keywords: constant torque start-up, torsional dynamic stresses 
 
 
1. INRODUCTION 
An electric motor will be analyzed, having a rotor 
characterized by the moment of inertia J1 coupled by 
means of a shaft to an equipment with the moment of 
inertia J2.  
The shaft between the motor and the equipment is 
characterized by the torsional stiffness kt. The model of 
the electro-mechanical system is represented in Fig. 1.   

 
Obviously, the driving torque Mm required to start-up 
the equipment has to be larger that the resisting torque 
Ms: 

Mm > Ms   (1) 
The start-up phase consists of two important steps 
(stages): 
 
Step 1: The vibration of the electro-mechanical 
system, without the motion of the equipment 
At the moment t=0, the rotor is subjected to a constant 
driving torque Mm but the equipment is still at rest.  The 
model of this step is presented in Fig. 2. 
The following notations are considered in Fig. 2: 
Mm –electromagnetic driving torque (constant);  
J1 – moment of inertia of the shaft;  

kt – stiffness parameter of the coupling shaft;  
ϕ1(t) – rotation angle of the rotor. 

 
 
Step 1 begins at the moments t = 0, when the rotor is 
subjected to the step torque Mm and the equipment 
remains for a very short time at rest (Fig. 3).  
 

 
 
The differential equation of the motion of the rotor 
under the action of the constant driving torque M can be 
expressed using the theorem of the angular momentum: 

m1t11 MkJ +⋅−=⋅ ϕϕ&&    (2) 
The initial conditions for Step 1 are:  

0)0(;0)0( 11 == ϕϕ &   (3) 

 J1  ϕ1 

Fig. 2 The model of the electro-mechanical 
system for step 1 
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Considering the initial conditions (3), the differential 
equation (2) can be expressed using the angular 
displacement and the angular velocity: 
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where p1 is the eigen-frequency of the elastic system:  

1

t
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Note 1: Under the action of the constant torque Mm the 
shaft will deform under the angle ϕ1, producing an 
internal torque Ms: 

t

s
m1sm1t k

MMk =⇒=⋅ ϕϕ   (6) 

The time t1 corresponding to the end of Step 1 is 
obtained by equalizing the relations (4) and (6): 
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In this way the end moment of Step 1 t1 can be 
determined: 
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The angular velocity of the rotor at the end of Step 1 is 
obtained introducing t1 in relation (4): 

t1
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The angular displacement given by relation (6) and the 
velocity of the rotor given by relation (9) are the initial 
conditions for Step 2 – Setting the equipment into 
motion. 
Note 2: The expression of the angular velocity (9) is 
valid only if the driving torque Mm ≥ Ms/2;  for the 
situation when Ms/2 < Mm <Ms system performs an 
oscillating motion. 

 
Step 2:  The vibration of the electro-mechanical 
system, during the motion of the equipment 
The corresponding model of this step is shown in Fig. 4. 
This is a system with two degrees of freedom, 
consisting of the rotor with the moment of inertia J1 
subjected to the driving torque Mm, the shaft with the 
torsional stiffness kt and the equipment with the 
equivalent moment of inertia J2 subjected to the 
resisting torque Ms (Mm> Ms). 

 
The two rotation angles ϕ1(t) and ϕ2(t) are time-
independent functions and express the relative motion 
(the torsional vibrations) of the the rotor and the 
equipment (of the system with two degrees of freedom) 
for the situation: Ms / 2 < Mm < Ms. 

 

 
The initial conditions for this step (at t=t1) are the final 
conditions from the Step 1: 

- angular displacements: 
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- angular velocities: 
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The differential equations of the system motion are 
obtained using the theorem of the angular momentum: 
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We denote by 21 ϕϕϕ −=  the relative angle of rotation 
between the rotor and the equipment.  
 
The differential equation of the relative motion between 
the rotor and the equipment is obtained by dividing the 
equations (12) by J1 and respectively J2 and subtracting 
them accordingly: 
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The general solution of the differential equation (13) is 
the sum of harmonic homogeneous solution and a 
particular solution: 
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where p is the eigen-frequency of the relative vibration : 

t
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The constants a and b from the general solution (14) 
can be determined using the initial conditions (10) and 
(11) in the differential equation (12):  

 Fig. 4 The model of the electro-
mechanical system for step 2 
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The general solution of the differential equation (13) is: 
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The dynamic torsion moment of the coupling shaft is a 
linear function, depending on the rotation angle ϕ(t): 

[ ]d)ptptcos(ck)t(M 1td +−−⋅⋅= θ  (18) 

where: 
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2. NUMERICAL SIMULATION OF MOTION 
 
Depending on the relative values of driving torque Mm 
and the resisitng torque Ms, the following particular 
cases can be anlyzed: 

Case 1: 
2

MM s
m ≤   when the equipment is at rest and 

only the rotor J1 vibrates, due to the application of the 
driving torque Mm. Fig. 5 shows the simulated motion 
using MATHCAD. 
The solution of the vibrations is given by equations (4): 
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In Fig. 5 the graphs of variation of the angular 
displacements and velocities are plotted for the 
following particular parameters: J1=10-2 kgm2; J2=5⋅10-

2 kgm2; kt=1000Nm; Ms=300 Nm  �i  Mm=150 Nm . 
Remarks:  
Figure 5 shows the variation of the angular 
deformations of the rotor around an average value equal 
to the static angular deformation Mm/kt, with an 
amplitude of: 

 
t

m
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M
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The angular velocity varies around an average value 
equal to zero with the amplitude: 

1
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Fig. 5. The variation of the angular displacements and 

velocities  for case 1 
 

Case 2:  sm
s MM

2
M

<< , when the equipment is not in 

a solid body motion, but the rotor J1 and the equipment 
J2 vibrate due to the application of driving torque Mm. 
At the limit when sm MM =  the system vibrates; the 
torsional vibration solution is obtained by replacing 

sm MM = in the relations (17): 
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Figure 6 shows the variation of the angular 
displacements and velocities for the following particular 
parameters: J1=10-2 kgm2; J2=5⋅10-2 kgm2; kt=1000Nm; 
Ms= Mm=300 Nm . 
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Fig. 6. The variation of the angular displacements and 

velocities for case 2 
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Remarks:  
The diagrams in Figure 6 show the variation of the 
angular deformations around an average value equal to 
the static angular deformation Mm/kt corresponding to 
the driving torque, with the amplitude: 
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The angular velocity varies around an average value 
equal to zero with the amplitude: 
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The time t1 given by relation (8) for this case has the 
value: t1 = 4,967⋅10-3 s.  
The origin of the time axis in Fig. 6 was considered to 
be t1. 
 
Case 3:   sm MM > , when the equipment is in a solid 
body motion, but the rotor J1 and the equipment J2 
vibrate due to the application of the driving torque Mm. 
The solution of the torsional vibrations in this case is 
given by the relationship (17). 
In Fig. 7 the variation of the angular displacements and 
velocities is plotted using MATHCAD for the following 
particular parameters:  
J1=10-2 kgm2; J2=5⋅10-2 kgm2; Nm450M5,1M sm =⋅=  
kt=1000Nm;  
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Fig. 7. The variation of the angular displacements and 

velocities for case 3 

 
Remarks:  
The diagrams in Fig. 7 show the variation of the angular 
deformations around an average value equal to the static 
angular deformation Mm/kt corresponding to the driving 
torque, with the amplitude: 
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The angular velocity varies around an average value 
equal to zero, with the amplitude: 

s/rad855,155p
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The time t1 given by relation (8) for this case has the 
value: t1 = 6,623⋅10-3 s.  
The origin of the time axis in Fig. 7 was considered to 
be t1. 
 
3. NUMERICAL SIMULATION OF THE 
DYNAMIC TORQUE IN THE SHAFT  
The variation of the dynamic torque in the shaft will be 
investigated for the three cases mentioned above:  

Case 1: Nm150
2

MM s
m == , when the rotor J1 and 

and the equipment J2 vibrate due to the application of 
the driving torque Mm producing a deformation ϕ1(t) 
given by the relation (21). In this case the dynamic 
torque in the shaft Md  is given by the following relation: 
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The variation of the dynamic torque in the shaft Md1 is 
the same as the variation of the angular deformation 
from Fig. 5, with the difference that the average 
dynamic torque Mdmed and the amplitude of the dynamic 
torque ∆Md are equal to the applied driving torque Mm: 

Nm150MM ddmed =∆=       (30) 

 
Case 2:   Nm300MM sm ==  when the rotor J1 and the 
equipment J2 vibrate due to the application of the 
driving torque Mm and the deformation of the shaft ϕ1(t) 
is given by equation (24). The dynamic torque in the 
shaft Md is given by relation: 
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The average dynamic torque Mdmed is equal to the 
applied driving torque:  

Nm300MM mdmed == Mm        (32) 

The amplitude of dynamic torque ∆Md is: 
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Case 3:   Nm450M5,1M sm =⋅=  when the equipment 
is in a solid body motion, but the rotor J1 and the 
equipment J2 vibrate due to the application of the 
driving torque Mm. The deformation of the shaft ϕ1(t) is 
given by the relation (17). The dynamic torque Md is 
given by the relation: 
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The average dynamic torque Mmed  is: 
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The amplitude of dynamic torque ∆Md is equal with: 
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4. THE INFLUENCE OF THE MASS AND 
DRIVING TORQUE PARAMETRERS ON THE 
DYNAMIC TORQUE IN THE SHAFT  
 
The parameters x and y are definded as it follows:  
• The mass parameter x is the ratio of the moments 

of inertia of the rotor and of the equipment (see 
Fig. 1): 

2

1

J
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• The driving torque parameter y is the ratio of the 
driving torque Mm over the resistant torque Ms (see 
Fig. 1): 
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M
My

s

m ≥=    (39) 

The maximum and the minimum dynamic torques 
Mdmax and Mdmin cand be expressed considering the 
parameters x and y as it follows: 
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The following quantities will be defined to study the 
influence of mass parameter x and torque parameter y 
on the dynamic torque Md: 
• The dynamic multiplier of the maximum torque:  
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• The dynamic multiplier of the average torque:  
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• The dynamic multiplier of the torque amplitude  
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4.1. The influence of mass parameter x 
 
Fig. 8 - 10 show the graphs of variation of all the 
dynamic multipliers presented above, for the following 
particular parameters:  
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Fig. 8. Influence of mass parameter x on Ψmax 
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4.2. The influence of torque parameter y 
 
Fig. 11 - 13 show the graphs of variation of the defined 
multipliers, for the following particular parameters:  
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Fig. 11. Influence of torque parameter y on Ψmax 
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5. CONCLUSIONS  
 
The results of the performed theoretical research and 
numerical simulations, can be summarized in the 
following conclusions: 
- the results of the three insetigated cases show the 

possibility of setting the system into motion for 
values of the driving torque between Ms/2 and Ms, 
when the driving toruqe Mm is suddenly applied; 

- as shown in Fig. 8 - 10, the dynamic multiplier ∆Ψ 
decreases asymptotically with x as well as the 
dynamic multiplier Ψmed for y ≥ 0.5.  

- as shown in Fig. 11 - 13, the dynamic multipliers 
Ψmed and ∆Ψ  increase with the torque parameter y 
and the mass parameter x. The lines intersect in a 
point corresponding to the values: y = 1 and 
respectively y = 0,5. 
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