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Abstract: The paper aims to present a numerical method used to study the dynamic of a rigid solid which describes a plan-parallel 

motion subjected to links. We will first establish the equations of motion for the rigid solid considered to be free and then we will 

write the differential equations describing the motion of the rigid solid considering the connection forces that are considerec 

unknown. The connection forces are then removed from the system of differential equations taking into account the geometrical 

constraints imposed by the link. 
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1. INTRODUCTION  

We consider a rigid solid which describes a plan-parallel 

motion presented in the figure below (fig.1). A point 

“O1” which belongs to the rigid solid is forced to move 

on a circle of radius “R”.  

 

The rigid solid is acted upon by his force of gravity 1G  

which is considered to be an active force. We propose to 

study the movement of the rigid solid under the action of 

active forces and the connection forces. 

 
Figure 1.  Rigid solid describing a plan-parallel motion 

 
 

2. ESTABLISHING THE EQUATIONS OF 

MOTION FOR THE SOLID RIGID BODY 

CONSIDERED TO BE FREE 

 

For the rigid solid which is supposed to be free, the 

equations of motion will be written in matrix form as 

followings: 
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In equation (1) the intervening sizes have the following 

expressions: 
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In equation (1), { }.g
1

Q  is called the vector of “gyroscopic 

forces” and its expression is given by the relation (10). 

 

3. ESTABLISHING THE EQUATIONS OF 

MOTION FOR THE SOLID RIGID BODY 

SUBJECTED TO LINKS 

 

In the presence of links the equations of motion (1) will 

be written as followings: 
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In equation (20), { }c
1

Q  represents the connection vector 

forces and it has the following expression: 
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Tc

1
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where: 
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In relation (22), λ1, λ2, λ3, λ4 represent the Lagrange 

multipliers which are unknown for now.  

 

4. STABILIREA ECUAŢIILOR DE LEGĂTURĂ 
ÎNTRE PARAMETRII CINEMATICI 

 

Linking equations between kinematical parameters of the 

rigid solid “1” may be written under undifferentiated 

form as followings:  
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Under differential form equations (23)-(26) will be 

written as followings: 
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Equations (27)-(30) may be written in matrix form as 

followings: 
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In equation (31) the following notation is introduced: 

 [ ] [ ] [ ].ext
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Using the notation given by the relation (42) relation 

(31) will be written as followings: 

 [ ] { } { }0vL 1 =⋅λ   (43) 

In relations (38)-(40) the sizes Ψ, θ and φ have the 

following meanings: 

Ψ –angle of precession 

θ –angle of nutation 

φ –angle of self - rotation 

 

5. ELIMINATION OF LINKING FORCES FROM 
MOVEMENT EQUATIONS 

We multiply the relation (20) to the left with [ ]T
L τ  and 

we will obtain:  
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Taking into account the relation (48), equation (44) 

becomes: 
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We derive the equation (43) with respect to time and we 

will obtain: 
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In relations (45)-(48) the matrix [ ]τL  has the following 

expression:  
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In relation (64) the matrix [ ]∗
τL  has the following 

expression:  
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In relation (65) the matrices [ ]1L∗
τ  and [ ]2L∗

τ  have the 

followings expressions:  
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The matrix [ ]τL  defined by the equation (64) is called 

literature “orthogonal complement”. The relations (49), 

(50), (61) şi (62) form a system of twelve first-order 

differential equations which are solved using numerical 

integration methods and we obtain the results shown in 

the figures below. (fig.2-10).  

In figure 2 is shown the variation of the angle size φ1 

with respect to time.  
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Figure 2.Variation of the angle φ1 with respect to 

time 
 

In the figure 3 is shown the variation of angular 

velocity with respect to time. 
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Figure 3.Variation of angular speed ω1 with respect 

to time 
 

 

 

The rigid solid starts from rest so its initial angular 

velocity is zero. The dynamic study is performed for a 

period of ten seconds.  

In figure 4 is shown the time evolution of the mobile 

reference system origin abscissa  relatively to the fixed 

reference frame T(O x y z). The dynamic study is 

performed for a period of ten seconds. At the initial 

moment the point “O1” abscissa (the mobile reference 

system origin) is zero.  
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Figure 4. Size variation abscissa origin of the mobile 

reference system with respect to time 
 

In  figure 5 is shown the time evolution of the mobile 

reference system origin ordinate T1(O1x1y1z1) relatively 

to the fixed reference frame T(O x y z ). The dynamic 

study is carried out over a period of ten seconds. At the 

initial moment the ordinate of the point “O1” (the mobile 

reference system origin) has a value equal to the length 

of the radius “R” that in the particular case considered 

has the value R=1.  

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [seconds]

y O
1

 [
m

e
te

rs
]

 
Figure 5. Size variation ordinate origin of the mobile 

reference system with respect to time 
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In figure 6 is shown the time evolution of the abscissa 

value of the rigid body “1” center of mass relatively to 

the fixed reference system T (O x y z).  
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Figure 6. Size variation abscissa of the rigid solid 

center of mass with respect to time 
 

The dynamic study is carried out over a period of ten 

seconds. At the initial moment the abscissa of the point 

“C” (the rigid solid center of mass) is zero. 

 In figure 7 is shown the time evolution of the ordinate 

value of the rigid body “1” center of mass relatively to 

the fixed reference system T (O x y z). The dynamic 

study is carried out over a period of ten seconds. At the 
initial moment the ordinate of point “C” (the rigid body 

center of mass) has a value which is equal to the sum of 

circle radius and the distance O1C. 

At the initial moment the ordinate value of point “C” 

(the mass center of the rigid body “1”) may be calculated 

using the relation: 

 CORy 10,C +=           (64) 
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Figure 7. Size variation ordinate of the rigid solid 

center of mass with respect to time 
 

The rigid body center of mass trajectory is shown in the 

figure 8. 
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Figure 8. The rigid solid body center of mass 

trajectory 
 
Analyzing the figure it can be seen that the initial 

position of the center of mass “C” is characterized by the 

following coordinates: 

 5,1y,0x 0,C0,C ==   (65) 

The variation of the mobile reference system origin “O1” 

velocity projections on the mobile reference system 

T1(O1x1y1z1) axes is shown in the figures 9-10. Thus in 

figure 9 it may be observed the variation with respect to 
time of the origin “O1” velocity axis projection O1x1. 

The dynamic study is carried out over a period of ten 

seconds. 
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Figure 9. Variation with respect to time of point O1 

velocity axis O1x1 projection 
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In figure 10 it may be observed the variation with respect 

to time of the origin “O1” velocity axis projection O1y1. 

The dynamic study is carried out over a period of ten 

seconds.. 
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Figure 10. Variation with respect to time of point O1 

velocity axis O1y1 projection 

 

6. CONCLUSIONS 

 The numerical method proposed in the paper is based on 

writing in matrix form of the differential equations 

describing the motion rigid solid subjected to links both 

under the action of active forces (which are considered 

to be known) and the action of the connecting forces 

which are considered to be unknown and therefore must 

be eliminated. 

One could determine the displacement velocity and 

acceleration of any point belonging to the rigid body by 

using the numerical method described in the paper.  

The numerical method presented in this paper has a high 

degree of generality and it can be extended to the 

dynamic study of any mechanical system met in 

engineering applications.  
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