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Abstract: The sectional forces diagrams in polar coordinates for circular beams can be plotted using the step-function available in 

MATHCAD (2011). The suggested method has the advantage of allowing a fast identification of the critical sections subjected to 

bending and the position of concentrated loads. The step-function Φ allows an uniform and consistent expression and representation 

of the functions of the sectional forces in polar coordinates. This present paper deals with the method of determination of the 

analytical functions. Two particular examples for the determination of sectional forces diagrams for circular cantilevers under 

radial loading will also be shown.  
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1. PROBLEM DEFINITION 

The beam AB (Fig. 1) is defined by a circular geometric 

axis is a circular cantilever with its free end in section A 

and its fixed end in section B. The variable central angle 

is denoted by α. The cantilever is loaded with an 

uniformly distributed radial load q on the length AE 

(having the central angle β with respect to point A), a 

concentrated force P and Q in section D (with the 

variable central angle ϕ) and the moment M0 in section G 

(with the variable central angle ψ).  

 
Fig.1: General layout of the circular cantilever 

 

 

Requested tasks: 

 

1. Find the general analytical expressions of the axial 

force N(θ),  shear force T(θ) and bending moment 

Mi(θ) as a function of the uniformly distributed 

radial load q. 

2. Find the differential relations of the axial force, 

shear force and bending moment depending on the 

uniformly distributed radial load q.  

 

 

3. Find the force-couple system in section E 

corresponding to the exterior forces and the general 

expressions of the reaction forces in section B. 

4. Plot the diagrams of the axial force N(θ),  shear 

force T(θ) and bending moment Mi(θ) using the 

step-function in MATHCAD.  

 

1.1. General analytical expressions of the axial force, 

shear force and bending moment 

In order to determine the general expressions of the 

sectional forces corresponding to the uniformly 

distributed radial load q, a beam element will be 

considered having the length ds , located at an angular 

distance ε from the free end of the circular cantilever 

(Fig.2). The corresponding elementary force will be:   

 

dF=q⋅ ds= q⋅ R⋅dε 

 

 
Fig. 2: Determination of the sectional forces by the 

integration of the elementary force dF 
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The analytical expressions of the axial and shear 

sectional forces, N(θ) and T(θ), can be obtained using the 

uniformly distributed load on the sector AE, by 

integrating the projection of the elementary force dF on 

the normal and tangential directions, On and tt’ 

respectively (Fig. 2). 

If we consider the same sign convention as in the case of 

straight beams (Fig.3), the following expressions will be 

obtained [3- Marin C, 2012]:  
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The bending moment Mi(θ) for an uniformly distributed 

load q will be obtained for the sector AE by calculating 

the moment of the elementary force dF with respect with 

the current section and integrating along the arc θ [3- 

Marin C, 2012]: 
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1.2. Differential relations between the sectional forces 

and the uniformly distributed radial load q   

Between the sectional forces N(θ), T(θ) or Mi(θ) and the 

exterior load q certain differential relations can be 

defined. The analytical expressions of the forces can be 

verified using these relations [1- Marin C, 2006].  

 

 
Fig. 3: Beam element for the determination of the 

differential relations between sectional forces and 

external loads. 

 

A beam element will be considered (Fig. 3), having the 

length ds=R⋅dθ, corresponding to the central angle θ. 

The element is subjected to the axial forces N and N+dN, 

the shear forces T and T+dT and the bending moments 

Mi , Mi +dMi. 

The equations of equilibrium between the exterior loads 

and the sectional forces acting on the ends of the beam 

element are:  
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The following assumption can be made for very small 

angles dθ: 
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Therefore, the equations system (3) becomes: 
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The differential relations (5) between sectional forces 

and external loads can be also expressed as [4- Marin C, 

2009]: 
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The analytical expressions of forces (1) and bending 

moment (2) can be verified  [4- Marin C, 2009] using the 

diferential equations (6): 
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1.3. The expressions of the equivalent force-couple 

system in section E and the reaction forces  

The equivalent force-couple system in section E (Fig. 4) 

corresponding to the uniformly distributed radial load q 

can be determined using the expressions of the sectional 

forces (1) and (2), for the particular value of the angle:  

θ =β        [1- Marin C, 2006]: 
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The reaction forces in the fixed support B (HB, VB, MB ) 

can be determined using the equivalent force-couple 

system (1), the force P and the bending moment M0 [2- 

Marin C, 2007]: 
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Fig. 4: Determination of the equivalent force-couple 

system and the reaction forces 
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1.4. MATHCAD functions for plotting the forces 

diagrams in polar coordinates  

 

The forces diagrams in polar coordinates can be plotted 

using the step-function Φ, available in Mathcad [5- 

Mathcad, 2011]. Their geometrical axis will be a circle 

of radius R’=10 R.  

 

The same sign convention as in the case of straight 

beams will be adopted: positive N and T are represented 

towards the exterior of the geometry axis and positive Mi 

towards the interior. 

 

The diagrams in the sections corresponding to the 

concentrated loads are characterized by jumps and 

therefore the limit values of the sectional forces will be 

determined at the left and right of theses sections. 

The analytical expressions of the sectional forces can be 

expressed in polar coordinates using the step-function Φ 

available in Mathcad [3- Marin C, 2012]: 
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2. RESULTS 

 

2.1. Particular case A 

 

The reaction forces are determined for the following 

particular values of the given parameters:   

R=1m; P=1 kN; Q=0; M0=1kNm; q=1 kN/m; α=3π/2 ;  

β=5π/4; ϕ=3π/4;  ψ=2π/3,  

By replacing these values in (9) the reactions forces will 

be: 
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The forces diagrams (Fig. 5 – 7) were obtained by 

introducing the sectional forces functions (10) in 

Mathcad [5 – MATHCAD 2011]. 
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Fig. 5: Axial forces  Diagram–case A 
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Fig.6: Shear forces diagram–case A 
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Fig. 7: Bending moments diagram–case A 

 

 

Conclusion 

 

The particular case A is a general one and allows the 

identification of jumps in the internal forces diagrams in 

the sections corresponding to concentrated loads (see 

Fig. 5 – 7). The diagram values of the reactions in 

section B correspond with the values determined using 

equations (9). 

 

 

 

 

 

 

 

 

 

 

2.2. Particular case B 

The reaction forces are determined for the following 

particular values of the given parameters:  R=1m; Q=qR; 

M0=0; q=1 kN/m; α=π ;  β=0; ϕ=0. 

 

 

 
 

Fig. 8: General layout of the circular cantilever in 

case B. 

 

 
Fig. 9: Particular layout of the semicircular 

cantilever in case B. 

 

General layout of the circular cantilever - case B (Fig.8) 

is equivalent with particular layout of the semicircular 

cantilever (Fig.9)  

The reaction forces obtained by replacing the values of 

the parameters are: 
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The forces diagrams (Fig. 10 – 12) were obtained by 

introducing the sectional forces functions (10) in 

Mathcad [5 – MATHCAD 2011].  
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Fig. 10: Axial forces diagram–caseB  
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Fig.11: Shear forces diagram–case B 
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Fig. 12: Bending moments diagram–case B

  

 

Conclusion 

The particular case B is a symmetrical one. The beam is 

loaded with one distributed radial load along its length. 

The diagrams from Fig. 10 – 12 show that the axial force 

are constant (negative) and shear forces are null along its 

length. The bending moment is also null along its length.  

 

The vertical reaction in the fixed support VB is equal to 

the force Q=qR  in section A and corresponds to 50% of 

the equivalent load q distributed along the semi-circle 

Fe=2 kN.  

 

The results are in perfect agreement with the 

experimental results and correspond to the expected 

behavior for a symmetrically loaded symmetric structure.  

 

 

3. CONCLUSIONS 

 

The following conclusions could be drawn by 

interpreting the numerical results of the particular cases: 

− The method presented above allows the automated 

determination of the reaction forces, as function of 

the input parameters, as well as the plotting of the 

internal forces diagrams. The visualization of 

maximal and minimal values is as well enhanced.  

− The polar coordinates diagrams allow the fast 

identification of the critical section(s) and the 

maximum value(s) of the bending moment for future 

verification / design of the beam. 

− The method presented above has a high general 

character and can be verified by experimental data. 
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