ASPECTS OF THE PARAMETRIC ANALYSIS OF HYPERSTATIC PLANE SYSTEMS COMPOSED OF THREE WELDED BEAMS (II)

Cornel MARIN¹, Alexandru MARIN²

¹VALAHIA University of Targoviste, Romania - Email: marin_cor@yahoo.com

²ETH Zurich, Switzerland - Email: adu_de@yahoo.com

Abstract: The parametric analysis and design became of interest in the last time period due to the development of the computing technology and are widely used by the professional software. The parametric design is employed in the 2D and 3D professional modeling software, because it allows the reconstruction and change of the virtual model by changing one or more dimensional parameters. This work presents a simple example of parametric analysis of hyperstatic plane systems composed of three perpendicularly welded beams of the same length, using the force method for various loading scenarios with concentrated and distributed loads and bending moments.

Keywords: parametric analysis, hyperstatic (statically indeterminate) systems, force method.

1. INTRODUCTION

A plane hyperstatic frame is considered, composed of three perpendicularly welded beams of the same length L, fixed at the both ends, subjected to a loading scenario represented in the **Fig. 1**. The beams have a constant cross-section and are subjected to bending, shearing and/or tension/ /compression under the action of:

- the concentrated forces P_1 , P_2 and P_3 acting on the beams at the locations $\alpha_P L$, $\beta_P L$ and $\gamma_P L$;
- the bending moments N_1 , N_2 and N_3 acting on the beams at the locations $\alpha_N L$, $\beta_N L$ and $\gamma_N L$;
- the uniform distributed loads q_1 , q_2 and q_3 acting on the beam segments μL , θL and ψL respectively, at the locations ηL . ωL and τL .

For the particular values of the parameters, given in the Table 1, the reaction forces in the supports A and B will be calculated, along with the rotation of the section C.

N_1	PL	α_{N}	1/2
N_2	-	β_N	-
N_3	-	'n	-
P_1	-	α_{P}	-
P_2	-2P	β_{P}	1/2
P_3	-	β_{P}	-
q_1	-	η	-
		μ	-
q_2	-	Ø	-
		θ	-
q 3	-2P/L	τ	0
		¥	1/2

Table 1. Particular values of the parameters.

The parametric analysis of hyperstatic frame is represented by the determination of the parametric expressions of displacements for the base system and by the numerical computations for different particular values of the parameters.

2. FORCE METHOD

The force method allows the determination of the hyperstatic unknowns by choosing a statically determined system (called base system), which is mechanically equivalent to the given hyperstatic system. The base system is obtained by replacing the fixed support in the point B with mechanical elements: the forces X_1 and X_2 and the moment X_3 – which are the hyperstatic unknowns (Fig. 2).

Fig. 1. Frame layout and loading scheme

Fig. 2. The base system and the hyperstatic unknowns.

The canonical equations of the force method are:

$$\begin{cases} \delta_{10} + \delta_{11} \cdot X_1 + \delta_{12} \cdot X_2 + \delta_{13} \cdot X_3 = 0\\ \delta_{20} + \delta_{21} \cdot X_1 + \delta_{22} \cdot X_2 + \delta_{23} \cdot X_3 = 0\\ \delta_{30} + \delta_{31} \cdot X_1 + \delta_{32} \cdot X_2 + \delta_{33} \cdot X_3 = 0 \end{cases}$$
(1)

where:

 δ_{10} , δ_{20} and δ_{30} are the displacements produced by the given forces in the base system, on the direction of the hyperstatic efforts X_1 , X_2 and X_3 ;

 δ_{ij} are the displacements produced by the unit foces $X_j = 1$, j = 1, 2 and unit bending moment $X_3 = 1$ in the base system on the direction X_i .

The determination of the displacements δ_{l0} , δ_{20} and δ_{30} and δ_{l1} , δ_{l2} , ..., δ_{33} for the base system in Fig. 2 will be performed using the Mohr-Maxwell method, considering only the displacements produced by bending moments (**Error! Reference source not found., Error! Reference source not found.)**:

Fig. 3. The m₁ diagram.

Fig. 4. The m₂ diagram.

Fig. 5. The m₃ diagram.

3. OBTAINED RESULTS

The displacements corresponding to the unit forces δ_{ij} were determined using the equations (2) and the obtained values are presented in Table 2.

Table	2. Displa	acements	correspondi	ng 1	to the
unit fo	rces.				
	_	-3			-3

$\delta_{11} = \frac{5}{3} \cdot \frac{L^3}{EI}$	$\delta_{22} = \frac{4}{3} \cdot \frac{L^3}{EI}$
$\delta_{12} = \delta_{21} = \frac{L^3}{EI}$	$\delta_{13} = \delta_{31} = 2 \cdot \frac{L^2}{EI}$
$\delta_{33} = 3 \cdot \frac{L}{EI}$	$\delta_{23} = \delta_{32} = \frac{3}{2} \cdot \frac{L^2}{EI}$

The parametric expressions of the displacements δ_{10} , δ_{20} and δ_{30} as function of α , β , η , μ , ω and θ are obtained for each of the six loads, which independently act on the base system, using the diagrams in 6 - 14. The loads were considered as: $N_i = PL$; $P_i = P$; $q_{ij} = P/L$.

Fig. 4. Moment diagram for N₁.

Fig. 5. Moment diagram for N₂.

Fig. 8. Moment diagram for N_{3} .

Fig. 9. Moment diagram for P₁.

Fig. 10. Moment diagram for P₂.

Fig. 11. Moment diagram for P₃.

Fig. 12. Moment diagram for q₁.

Fig. 13. Moment diagram for q₂

Fig. 14. Moment diagram for q₃.

The obtained parametric expressions of the displacements are summarized in **Error!** Reference source not found. - Error! Reference source not found.

Table 3. Parametric expressions of the displacements δ_{l0} .

App	olied ads	Parametric expressions for δ_{I0}
N ₁	α	$\delta_{10} = \frac{4 - \alpha^2}{2} \cdot \frac{PL^3}{EI}$
N_2	β	$\delta_{10} = \frac{3 - 2\beta}{2} \cdot \frac{PL^3}{EI}$
N_3	γ	$\delta_{10} = \frac{(1-\gamma)^2}{2} \cdot \frac{PL^3}{EI}$
P_1	α	$\delta_{10} = \frac{(1-\alpha)(8-\alpha-\alpha^2)-3\alpha+2}{6} \cdot \frac{PL^3}{EI}$
P_2	β	$\delta_{10} = \frac{(1-\beta)(2-\beta)}{2} \cdot \frac{PL^3}{EI}$
<i>P</i> ₃	γ	$\delta_{10} = \frac{(1-\gamma)^3}{6} \cdot \frac{PL^3}{EI}$
q_1	$\eta \\ \mu$	$\delta_{10} = \frac{0.25\mu^4 + \eta\mu^3 + (1.5\eta^2 - 6)\mu^2 + (\eta^3 - 12\eta + 10)\mu}{6} \cdot \frac{PL^2}{EI}$
q_2	$egin{array}{c} \omega \ heta \end{array} \ heta \end{array}$	$\delta_{10} = \frac{\theta^3 - 3(1.5 - \omega)\theta^2 + 3(\omega^2 - 3\omega + 2)\theta}{6} \cdot \frac{PL^3}{EI}$
q_3	$ au = arphi \ arp$	$\delta_{10} = \frac{-0.25\psi^4 + (\tau - 1)\psi^3 - 1.5(1 - \tau)^2\psi^2 + (1 - \tau)^3\psi}{6} \cdot \frac{PL^3}{EI}$

Table 3. Parametric expressions of the displacements δ_{20} .

Applied Loads		Parametric expressions for δ_{20}
N_{I}	α	$\delta_{20} = \frac{3}{2} \cdot \frac{PL^3}{EI}$
N_2	β	$\delta_{20} = \frac{3 - \beta^2}{2} \cdot \frac{PL^3}{EI}$

N_3	γ	$\delta_{20} = (1 - \gamma) \cdot \frac{PL^3}{EI}$	
P_1	α	$\delta_{20} = \frac{2 - 3\alpha}{2} \cdot \frac{PL^3}{EI}$	
<i>P</i> ₂	β	$\delta_{20} = \frac{(1-\beta)(8-\beta-\beta^2)}{6} \cdot \frac{PL^3}{EI}$	98
<i>P</i> ₃	γ	$\delta_{20} = \frac{(1-\gamma)^2}{2} \cdot \frac{PL^3}{EI}$	
q_1	$\eta \ \mu$	$\delta_{20} = \frac{\mu(4-3\mu-6\eta)}{4} \cdot \frac{PL^3}{EI}$	
q_2	$egin{array}{c} \omega \ heta \end{array} \ heta \end{array}$	$\delta_{20} = \frac{0.25\theta^4 + \omega\theta^3 + (1.5\omega^2 - 4.5)\theta^2 + (\omega^3 - 9\omega + 8)\theta}{6} \cdot \frac{PL^3}{EI}$	
q_3	$\begin{array}{c} \tau \\ \psi \end{array}$	$\delta_{20} = \frac{\psi^3 - 3(1 - \tau)\psi^2 + 3(1 - \tau)^2\psi}{6} \cdot \frac{PL^3}{EI}$	

Table 5. Parametric expressions of the displacements δ_{i0} .

uispie	accin	
App Loa	olied ads	Parametric expressions for δ_{20}
N_I	α	$\delta_{30} = (3 - \alpha) \cdot \frac{PL^2}{EI}$
<i>N</i> ₂	β	$\delta_{30} = (2 - \beta) \cdot \frac{PL^2}{EI}$
N_3	γ	$\delta_{30} = (1 - \gamma) \cdot \frac{PL^2}{EI}$
P_1	α	$\delta_{30} = \frac{\alpha^2 - 6\alpha + 4}{2} \cdot \frac{PL^2}{EI}$
P_2	β	$\delta_{30} = \frac{(1-\beta)(3-\beta)}{2} \cdot \frac{PL^2}{EI}$
P_3	γ	$\delta_{30} = \frac{(1-\gamma)^2}{2} \cdot \frac{PL^2}{EI}$
q_1	$\eta \ \mu$	$\delta_{30} = \frac{\mu^3 - 3(3 - \eta)\mu^2 + 3(\eta^2 - 6\eta + 4)\mu}{6} \cdot \frac{PL^2}{EI}$
q_2	$egin{array}{c} \omega \ heta \end{array} \ heta \end{array}$	$\delta_{30} = \frac{\theta^3 - 3(2-\omega)\theta^2 + 3(\omega^2 - 4\omega + 3)\theta}{6} \cdot \frac{PL^2}{EI}$
	$\begin{array}{c} au \\ \psi \end{array}$	$\delta_{30} = \frac{\psi^3 - 3(1-\tau)\psi^2 + 3(1-\tau)^2\psi}{6} \cdot \frac{PL^2}{EI}$

In **Error! Reference source not found.5** the hyperstatic frame configuration is represented for the case of the particular values from Table 1.

1.

According to the relations in Error! Reference source not found. - Error! Reference source not found., the displacements are:

$$\begin{cases} \delta_{10} = \left[\frac{4-\alpha^2}{2} \cdot 1 + \frac{(1-\beta)(2-\beta)}{2} \cdot (-2) + \frac{-0.25\gamma^4 + \gamma^3 - 1.5\gamma^2 + \gamma}{6} \cdot (-2)\right] \frac{PL^3}{EI} \\ \Rightarrow \delta_{10} = \frac{67}{64} \frac{PL^3}{EI} = 1.046875 \frac{PL^3}{EI} \end{cases}$$

$$(3)$$

$$\delta_{20} = \left[\frac{3}{2} \cdot 1 + \frac{(1-\beta)(8-\beta-\beta^2)}{6} \cdot (-2) + \frac{\gamma^3 - 3\gamma^2 + 3\gamma}{6} \cdot (-2)\right] \frac{PL^3}{EI} = 0$$
(4)

$$\delta_{30} = \left[(3 - \alpha) \cdot 1 + \frac{(1 - \beta)(3 - \beta)}{6} \cdot (-2) + \frac{\gamma^3 - 3\gamma^2 + 3\gamma}{6} \cdot (-2) \right] \frac{PL^2}{EI}$$

$$\Rightarrow \delta_{30} = \frac{23}{24} \frac{PL^2}{EI} = 0.958333 \frac{PL^2}{EI}$$
(5)

Replacing the obtained values in the equations system (1), the hyperstatic unknowns may be now determined:

$$\begin{cases} \frac{5}{3} \cdot \frac{L^3}{EI} \cdot X_1 + \frac{L^3}{EI} \cdot X_2 + 2 \cdot \frac{L^2}{EI} \cdot X_3 = -\frac{67}{64} \frac{PL^3}{EI} \\ \frac{L^3}{EI} \cdot X_1 + \frac{4}{3} \cdot \frac{L^3}{EI} \cdot X_2 + \frac{3}{2} \cdot \frac{L^2}{EI} \cdot X_3 = 0 \\ 2 \cdot \frac{L^2}{EI} \cdot X_1 + \frac{3}{2} \cdot \frac{L^2}{EI} \cdot X_2 + 3 \cdot \frac{L}{EI} \cdot X_3 = -\frac{23}{24} \frac{PL^2}{EI} \end{cases}$$
(6)

$$X_{1} = -\frac{235}{192}P = -1,223958 P$$

$$X_{2} = \frac{23}{28}P = 0,821429 P$$

$$X_{3} = \frac{173}{2016}P = 0,085813 P$$
(7)

CONCLUSIONS

- Using MATHCAD 14, any hyperstatic systems similar to the presented case can be analyzed, by simply modifying the parameters given in the relations above.
- The parametric relations can also be used for the verification of the results obtained for this type of systems by means of other numerical analysis methods.

REFERENCES

Hadar, A., Marin, C., Petre, C. & Voicu, A. (2005). METODE NUMERICE ÎN INGINERIE. Editura Politehnica Press, București.

- Marin, C. (2006). REZISTENȚA MATERIALELOR ȘI ELEMENTE DE TEORIA ELASTICITĂȚII. Editura Bibliotheca, Targoviste.
- Marin, C. (2007). APLICATII ALE TEORIEI ELASTICITĂŢII IN INGINERIE. Editura Bibliotheca, Targoviste.
- Marin, C. & Popa, F. (2001). REZISTENȚA MATERIALELOR. PROBLEME DE EXAMEN. Editura Macarie, Târgovişte.