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Abstract: The paper presents a numerical method used for positional kinematical analysis of the cardanic transmission. For this 
purpose we first determine the differential equations describing the movement of the mechanism in the presence of constraints. These 
equations are written in the matrix form. Then, the system of differential equations obtained is integrated using numerical integration 
methods. 
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1. INTRODUCTION  

 
The cardanic transmission may be considered as a 
particular case of spherical quadrilateral mechanism [1]. 
In the figure below (fig.1) “1” represents the driving 
element and “3” the driven element. As it can be seen the 
angle between the driving and the driven element is 
denoted with “α” and in general is different from zero. 
The range of this type of transmission is very high. This 
type of transmission is known under different names 
such as: universal joint, Hooke coupling, cross cardan 
[1]. 

 
Fig.1 Cardanic Transmission 

 

2. ESTABLISHEMENT THE DIFERENTIAL 
EQUATIONS OF MOTION IN THE 
PRESENCE OF CONSTRAINTS 

The relationship between kinematical parameters of rigid 
solid “1” and kinematical parameters of the rigid solid 
“2” may be written in the matrix form as follows: 

[ ] { } [ ] { } [ ] { } { }0RRR 2120220110 =ω⋅+ω⋅−ω⋅     (1) 

In the mathematical relationship (1) the terms involved 
have the following expressions: 
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{ } [ ]Tzyx1 111 ωωω=ω                                          (6) 

111 xxx dtd ω=Φ=Φ&                                                (7) 

111 yyy dtd ω=Φ=Φ&                                                (8) 

111 zzz dtd ω=Φ=Φ&                                                (9) 

{ } [ ]T2121 00θ=ω &                                                (10) 

dtd 2121 θ=θ&                                                            (11) 

The relationship between kinematical parameters of rigid 
solid “2” and kinematical parameters of the rigid solid 
“3” may be written in the matrix form as follows: 

[ ] { } [ ] { } [ ] { } { }0RRR 3240330220 =ω⋅+ω⋅−ω⋅  (12) 

In the mathematical relationship (12) the terms involved 
have the following expressions: 

[ ] [ ] [ ] [ ]30303030R Φ⋅Θ⋅Ψ=                                    (13) 
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constant=α                                                               (16) 
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[ ] [ ] [ ] [ ]32322040 RR Θ⋅Ψ⋅=                                    (18) 
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{ } [ ]Tzyx2 222 ωωω=ω                                      (21) 

 

222 xxx dtd ω=Φ=Φ&                                            (22) 

 

222 yyy dtd ω=Φ=Φ&                                            (23) 

 

222 zzz dtd ω=Φ=Φ&                                             (24) 

 

{ } [ ]Tzyx3 333 ωωω=ω                                       (25) 

 

333 xxx dtd ω=Φ=Φ&                                            (26) 

 

333 yyy dtd ω=Φ=Φ&                                            (27) 

 

333 zzz dtd ω=Φ=Φ&                                             (28) 

 

{ } [ ]T3232 00θ=ω &                                                (29) 

 

dtd 3232 θ=θ&                                                           (30) 

 

3. INTRODUCING EXTERNAL CONNECTING 
EQUATIONS 

Between rigid solids that make up the system and 
outside there are certain links that lead to kinematical 
constraints.  

Thus, the links which exist between the rigid solid “1” 
and outside lead to the following restrictions: 

 

0dtd 11 xx =Φ=Φ&                                                  (31) 

 

0dtd 11 yy =Φ=Φ&                                                  (32) 

Similarly, the connections between rigid solid “3” and 
outside determine the following kinematical restrictions: 

 

0dtd 33 xx =Φ=Φ&                                                 (33) 

 

0dtd 33 yy =Φ=Φ&                                                 (34) 

 

The relationship between the angle of self-rotation φ1 
and the angle denoted with 1zΦ may be written under 
differential form as followings: 

 

11 zz11 dtddtd Φ=Φ=ϕ=ϕ &&&                                (35) 

 

The relationship between the angle of self-rotation φ3 
and the angle denoted with 3zΦ may be written under 
differential form as followings: 

 

33 zz33 dtddtd Φ=Φ=ϕ=ϕ &&&                              (36) 

 

First order derivative of the angle denoted with 

1zΦ represents the angular speed of the rigid solid “1” 
which is considered to be constant and known: 
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constant11 zz =ω=Φ&  

The unknowns of the problem under consideration are 
the values of the following quantities: 

1xΦ ; 1yΦ ; 1zΦ ; 2xΦ ; 2yΦ ; 2zΦ ; 3xΦ ; 3yΦ ; 3zΦ ;

21θ ; 32θ ; 1ϕ ; 3ϕ  

 

4. NUMERICAL INTEGRATION OF 
DIFFERENTIAL EQUATIONS SYSTEM FOR 
SOME   PARTICULAR  CASES 

In this chapter we will perform numerical integration of 
the system of differential equations for one particular 
case namely that for one specific value of the angle 
alpha. If the angle is set to π ⁄ 3 [radians] will get the 
results in the figures below (Fig.1,…., Fig.13) 
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Figure 1. Angle 1xΦ values as function of time 
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 Figure 2. Angle 1yΦ  values as function of time 
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Figure 3. Angle 1zΦ values as function of time 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1
-0.5

0
0.5

1
1.5

α = π/3 [rad]

Φ
x2

 [r
ad

]

time [seconds]  
Figure 4.  Angle 2xΦ values as function of time 
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Figure 5.  Angle 2yΦ values as function of time 
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 Figure 6.  Angle 2zΦ values as function of time 
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Figure 7.  Angle 3xΦ values as function of time 
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Figure 8.  Angle 3yΦ values as function of time 
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Figure 9.  Angle 3zΦ values as function of time 
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Figure 10.  Angle 21θ values as function of time 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0
α = π/3 [rad] 

θ 32
 [r

ad
]

time [seconds]
Figure 11.  Angle 32θ  values as function of time 
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Figure 12.  Angle 1ϕ  values as function of time 
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Figure 13.  Angle 3ϕ  values as function of time 

 

5. CONCLUSIONS 
 
The cardanic transmission mechanism the kinematics of 
which is studied in the present paper is only an example 
to illustrate the application of the numerical method 
described in the paper content.  
Numerical method presented has a high degree of 
generality. It can also be applied to any other mechanical 
system. 
 When the value of the angle alpha is set to ninety 
degrees that means π ⁄2 radians, the mechanism locks. 
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