COMPLEX 3D SHAPES WITH SUPERELLIPSOIDS AND SUPER CONES

Ţălu Ş.¹, Ţălu M.²

¹ Technical University of Cluj-Napoca, Faculty of Mechanics, Department of Descriptive Geometry and Engineering Graphics, B-dul Muncii Street, no. 103-105, 400641, Cluj-Napoca, Romania, e-mail: stefan ta@yahoo.com

²University of Craiova, Faculty of Mechanics, Department of Applied Mechanics, Calea Bucuresti Street, no. 165, Craiova, 200585, Romania, e-mail: mihai talu@yahoo.com

Abstract. The purpose of this paper is to present the results of a CAD study for generating of complex 3D shapes with superellipsoids and super cones based on computational geometry. To obtain the relevant geometric informations concerning the shape for different 3D complex objects the Madsie Freestyle 1.5.3 application for computation was used. The results of these study can be used in complex geometric constructions and optimized CAD structures used in engineering and sculpture design.

Keywords: engineering design, sculpture design, superellipsoid, super cone, implicit surface, CAD

1. INTRODUCTION

With the development of modern technology, the demand for sculptured surfaces in complex 3D shapes has risen rapidly in recent years. In modeling, editing, and rendering of complex 3D objects different geometry representations has been used [1, 2, 3]. Mathematical modeling and other optimizing methods based on computational geometry permit to interpret geometrical informations that assists the designers to solve various problems in engineering and sculpture design [4, 5].

2. SUPERELLIPSOID

In recent years, superellipsoids have received significant attention for object modeling [6].

A superellipsoid, as an ellipsoid's extension, is the result of the spherical product of two 2D models (two superellipses) [6].

A superellipse, analogous to a circle, is expressed as:

$$\left(\frac{x}{a}\right)^{2/\varepsilon} + \left(\frac{y}{b}\right)^{2/\varepsilon} = 1, \ a > 0, b > 0.$$
 (1)

and can be written in next form

$$s(\theta) = \begin{bmatrix} a\cos^{\varepsilon}\theta\\b\sin^{\varepsilon}\theta \end{bmatrix}, -\pi \le \theta \le \pi.$$
 (2)

where exponentiation with ε is a signed power function such that:

$$\cos^{\varepsilon} \theta = sign(\cos \theta) |\cos \theta|^{\varepsilon}. \tag{3}$$

Superellipsoids can be expressed by a spherical product of a pair of such superellipses:

$$r(\eta, \omega) = s_{1}(\eta) \otimes s_{2}(\omega) = \begin{bmatrix} \cos^{\varepsilon 1} \eta \\ a_{3} \sin^{\varepsilon 1} \eta \end{bmatrix} \otimes \begin{bmatrix} a_{1} \cos^{\varepsilon 2} \omega \\ a_{2} \sin^{\varepsilon 2} \omega \end{bmatrix} =$$

$$= \begin{bmatrix} a_{1} \cos^{\varepsilon 1} \eta \cos^{\varepsilon 2} \omega \\ a_{2} \cos^{\varepsilon 1} \eta \sin^{\varepsilon 2} \omega \\ a_{3} \sin^{\varepsilon 1} \eta \end{bmatrix}, -\frac{\pi}{2} \leq \eta \leq \frac{\pi}{2}; -\pi \leq \omega \leq \pi.$$

$$(4)$$

The a_1 , a_2 , a_3 parameters are scaling factors along the three coordinate axes. ε_1 and ε_2 are derived from the exponents of the two original superellipses.

This flexibility achieved by raising each trigonometric term to an exponent is of particular interest to us. In simple terms, these exponents, control the relative roundness and squareness in both the horizontal and vertical directions.

The shape of the superellipsoid cross section parallel to the [xoy] plane is determined by ε_I , while the shape of the superellipsoid cross section in a plane perpendicular to the [xoy] plane and containing z axis is given by ε_2 .

A superellipsoid is defined as the solution of the general form of the implicit equation [7]:

$$\left(\left(\frac{x}{a_1} \right)^{2/\varepsilon_2} + \left(\frac{y}{a_2} \right)^{2/\varepsilon_2} \right)^{\varepsilon_2/\varepsilon_1} + \left(\frac{z}{a_3} \right)^{2/\varepsilon_1} = 1.$$
(5)

All points with coordinates (x, y, z) that correspond to the above equation lie on the surface of the superellipsoid. This is a compact model defined by only five parameters that permits to handle a different shapes. The exponent functions are continuous to ensure that the superellipsoid model deforms continuously and thus has a smooth surface.

This form provides an information on the position of a 3D point related to the superellipsoid surface, that is important for interior/exterior determination [8].

We have an inside-outside function F(x, y, z):

F(x, y, z) = 1 when the point lies on the surface;

F(x, y, z) < 1 when the point is inside the superellipsoid;

F(x, y, z) > 1 when the point is outside.

The main advantage of the implicit representation is that the reconstructed object can be subjected to any regular Boolean operation and also permits the user to incorporate the resulting solid into other models to obtain the complex final product. Whenever shapeprocessing introduces topological changes, implicit representations are more flexible and convenient than parameterization-based representations.

3. GRAPHICAL REPRESENTATIONS

The Madsie Freestyle 1.5.3 application for computation was used to generate the 3D objects with superellipsoids and super cones [9] and the graphical representations are given in Table 1.

The parameters for superellipsoid are:

Radius $X(r_l)$ - the radius of the ellipsoid along the X-axis;

Radius Y (r_2) - the radius of the ellipsoid along the Y-axis;

Radius $Z(r_3)$ - the radius of the ellipsoid along the Z-axis:

Stacks (n_i) - the number of segments along the Z-axis; Slices (n_2) - the number of radial segments around the ellipsoid;

Stack Exponent (e_1) - the shape of the ellipsoid; Slice Exponent (e_2) - the shape of the ellipsoid.

The parameters for super cone are:

Radius $X(r_4)$ - the radius of the cone along the X-axis;

Radius Z (r_5) - the radius of the cone along the Z-axis;

Height (h) - the height of the cone;

Stacks (n_3) - the number of segments along the height;

Slices (n_4) - the number of radial segments around the cone:

Exponent (e_3) - the shape of the cone;

Capped - if enabled will put a polygon at the bottom of the cone.

Because there are some numerical issues in computation with both very small or very large values of the exponents, in this study, for safety, they are chosen in the range of 0.01 to about 8.

Table 1. Graphical representations of 3D complex objects

No.	Values of parameters	Axonometric
		representation
1	Superellipsoid: $r_1 = 1; r_2 = 1; r_3 = 1;$ $n_1 = 64; n_2 = 64;$ $e_1 = 2; e_2 = 1.$	
	Super cone: $r_4 = 1$; $r_5 = 1$; $h = 1$; $n_3 = 64$; $n_4 = 64$; $e_3 = 0.5$; Capped - enabled.	
2	Superellipsoid: $r_1 = 1$; $r_2 = 2$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 3$; $e_2 = 0.5$. Super cone: $r_4 = 1$; $r_5 = 1.5$; $h = 1$; $n_3 = 64$; $n_4 = 64$; $e_3 = 0.5$; Capped - enabled.	

3	Superellipsoid: $r_1 = 1$; $r_2 = 0.25$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 1$; $e_2 = 1$. Super cone: $r_4 = 0.5$; $r_5 = 2$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 8$; Capped - enabled.	
4	Superellipsoid: $r_1 = 0.5$; $r_2 = 1$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 8$; $e_2 = 0.01$. Super cone: $r_4 = 1.5$; $r_5 = 0.5$; $h = 1$; $n_3 = 64$; $n_4 = 64$; $e_3 = 0.5$; Capped - enabled.	
5	Superellipsoid: $r_1 = 1$; $r_2 = 0.1$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 1.5$; $e_2 = 2.5$. Super cone: $r_4 = 1.5$; $r_5 = 1$; $h = 1$; $n_3 = 64$; $n_4 = 64$; $e_3 = 5$; Capped - enabled.	
6	Superellipsoid: $r_1 = 1$; $r_2 = 0.5$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 0.01$; $e_2 = 4$. Super cone: $r_4 = 1$; $r_5 = 0.5$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 4$; Capped - enabled.	
7	Superellipsoid: $r_1 = 1$; $r_2 = 0.5$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 0.01$; $e_2 = 1$. Super cone: $r_4 = 0.5$; $r_5 = 1.5$; $h = 1.6$; $n_3 = 64$; $n_4 = 64$; $e_3 = 8$; Capped - enabled.	

0	Company Himagaid.		12	Companylling a ide	
8	Superellipsoid: $r_1 = 1.5$; $r_2 = 1.25$; $r_3 = 1.5$; $n_1 = 64$; $n_2 = 6$		13	Superellipsoid: $r_1 = 0.8$; $r_2 = 1.5$; $r_3 = 1.5$; $n_1 = 64$; $n_2 = 64$; $n_3 = 64$	
	Super cone: $r_4 = 1.5$; $r_5 = 1$; $h = 1.25$; $n_3 = 64$; $n_4 = 64$; $e_3 = 3$; Capped - enabled.			Super cone: $r_4 = 2$; $r_5 = 2$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 3$; Capped - enabled.	
9	Superellipsoid: $r_1 = 1$; $r_2 = 1$; $r_3 = 1.5$; $n_1 = 64$; $n_2 = 64$; $e_1 = 3$; $e_2 = 2$.		14	Superellipsoid: $r_1 = 0.8$; $r_2 = 1.5$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 1.3$; $e_2 = 1.5$.	
	Super cone: $r_4 = 1.5$; $r_5 = 1$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 3$; Capped - enabled.			Super cone: $r_4 = 2$; $r_5 = 1.5$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $n_4 = 64$; Capped - enabled.	
10	Superellipsoid: $r_1 = 1$; $r_2 = 1$; $r_3 = 1.5$; $n_1 = 64$; $n_2 = 64$; $e_1 = 1$; $e_2 = 2$.		15	Superellipsoid: $r_1 = 0.8$; $r_2 = 1.6$; $r_3 = 0.5$; $n_1 = 64$; $n_2 = 64$	
	Super cone: $r_4 = 0.5$; $r_5 = 1.5$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 7$; Capped - enabled.			Super cone: $r_4 = 1.5$; $r_5 = 2$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $n_4 = 64$; Capped - enabled.	
11	Superellipsoid: $r_1 = 1.5$; $r_2 = 1.5$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 5$; $e_2 = 2$.		16	Superellipsoid: $r_1 = 0.8$; $r_2 = 1.8$; $r_3 = 0.5$; $n_1 = 64$; $n_2 = 64$; $n_2 = 64$; $n_2 = 64$; $n_2 = 64$; Super cone:	
	Super cone: $r_4 = 2$; $r_5 = 1$; $h = 1.5$; $n_3 = 64$; $n_4 = 64$; $e_3 = 3$; Capped - enabled.			$r_4 = 1.8$; $r_5 = 1.7$; $h = 1.8$; $n_3 = 64$; $n_4 = 64$; $n_4 = 64$; Capped - enabled.	
12	Superellipsoid: $r_1 = 1.5$; $r_2 = 2$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 2.5$; $e_2 = 1.5$.		17	Superellipsoid: $r_1 = 1$; $r_2 = 2$; $r_3 = 0.5$; $n_1 = 64$; $n_2 = 64$; $e_1 = 2$; $e_2 = 0.5$.	
	Super cone: $r_4 = 1$; $r_5 = 1.5$; $h = 2$; $n_3 = 64$; $n_4 = 64$; $e_3 = 0.3$; Capped - enabled.			Super cone: $r_4 = 1$; $r_5 = 1.7$; $h = 1.8$; $n_3 = 64$; $n_4 = 64$; $n_3 = 0.5$; Capped - enabled.	

18	Superellipsoid: $r_1 = 1.5$; $r_2 = 2$; $r_3 = 0.7$; $n_1 = 64$; $n_2 = 64$; $e_1 = 2.4$; $e_2 = 0.5$.	
	Super cone: $r_4 = 2$; $r_5 = 1$; $h = 2$; $n_3 = 64$; $n_4 = 64$; $e_3 = 8$; Capped - enabled.	
19	Superellipsoid: $r_1 = 1$; $r_2 = 1.5$; $r_3 = 1$; $n_1 = 64$; $n_2 = 64$; $e_1 = 1.5$; $e_2 = 0.01$.	
	Super cone: $r_4 = 1$; $r_5 = 1.5$; $h = 1$; $n_3 = 64$; $n_4 = 64$; $e_3 = 3$; Capped - enabled.	
20	Superellipsoid: $r_1 = 0.5$; $r_2 = 1.5$; $r_3 = 0.5$; $n_1 = 64$; $n_2 = 64$; $n_1 = 1$; $n_2 = 0.5$. Super cone: $n_1 = 1$; $n_2 = 0.5$. Super cone: $n_2 = 1$; $n_3 = 1$	
21	Superellipsoid: $r_1 = 1$; $r_2 = 1.25$; $r_3 = 0.5$; $n_1 = 64$; $n_2 = 64$; $n_2 = 64$; $n_1 = 3$; $n_2 = 0.01$. Super cone: $n_1 = 0.8$; $n_2 = 1$; $n_3 = 0.8$; $n_3 = 0.8$; $n_4 =$	
22	Superellipsoid: $r_1 = 1$; $r_2 = 1$; $r_3 = 0.2$; $n_1 = 64$; $n_2 = 64$; $e_1 = 3$; $e_2 = 0.01$. Super cone: $r_4 = 1$; $r_5 = 0.7$; $h = 0.8$; $n_3 = 64$; $n_4 = 64$; $e_3 = 0.9$; Capped - enabled.	

4. CONCLUSIONS

This paper presents a CAD study for generating of complex 3D shapes with superellipsoids and super cones. The Madsie Freestyle 1.5.3 application for computation helps in obtaining conclusions referring to shape of complex 3D objects.

5. ACKNOWLEDGMENTS

The authors wish to thank to Mr. Mads Andersen for consultation, permission to use documentary material and The Madsie Freestyle 1.5.3 application from http://www.madsie.com/.

6. REFERENCES

- [1] Nitulescu T., Tălu Ş. Applications of descriptive geometry and computer aided design in engineering graphics. Cluj-Napoca, Romania: Publishing house Risoprint, 2001.
- [2] Tălu Ş., Racocea C. Axonometric representations with applications in technique. Cluj-Napoca, Romania: Publishing house MEGA, 2007.
- [3] Tălu Ş. Descriptive geometry. Cluj-Napoca, Romania: Publishing house Risoprint, 2010.
- [4] Ţălu Ş., Ţălu M. A CAD study on generating of 2D supershapes in different coordinate systems. ANNALS of Faculty of Engineering Hunedoara International Journal of Engineering, 2010; Tome VIII, Fasc. 3, pp. 201-203.
- [5] Tălu Ş., Țălu M. CAD generating of 3D supershapes in different coordinate systems. ANNALS of Faculty of Engineering Hunedoara - International Journal of Engineering, 2010; Tome VIII, Fasc. 3, pp. 215-219.
- [6] Jaklic A., Leonardis A., Solina F. Segmentation and Recovery of Superquadric. Computational imaging and vision. Dordrecth, The Netherlands: Kluwer Academic Publishers, 2000.
- [7] Velho L., Gomes J., Figueiredo L. H. Implicit Objects in Computer Graphics. New York: Springer-Verlag, 2002.
- [8] Chevalier L., Jaillet F., Baskurt A. Segmentation and superquadric modeling of 3D objects. Journal of Winter School of Computer Graphics, WSCG'03, 2003; 11(2), pp. 232-239.
- [9] Madsie Freestyle 1.5.3 application by Mads Andersen, Peter Sabroes Gade 17, 3. th, DK 2450 København SV, Denmark, 2009, at http://www.madsie.com/.